ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • solution culture  (2)
  • soybean  (2)
  • 1
    ISSN: 1573-5036
    Keywords: critical concentration ; magnesium ; manganese ; nitrogen ; phosphorus ; potassium ; solution culture ; zinc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Solution culture was used to characterise deficiencies or toxicities of several essential elements in Ipomoea batatas cv. Wanmun, and to define the critical concentrations of these elements in young mature leaves during vegetative growth. Tentative critical concentrations for deficiency, expressed on the basis of dry weight of leaf blade, were: nitrogen 3.8%, phosphorus 0.17%, potassium 2.4%, magnesium 0.12%, manganese 20μg/g and zinc 10μg/g. For manganese and zinc toxicities it was possible only to designate the range within which the critical concentration occurred. Visible symptoms are briefly described.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: Cmin ; depletion curve ; flowing solution culture ; Glycine max L. ; Imax ; Km ; maize ; phosphate uptake kinetics ; soybean ; Zea mays L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract To obtain plants of different P status, maize and soybean seedlings were grown for several weeks in flowing nutrient solution culture with P concentrations ranging from 0.03–100 µmol P L-1 kept constant within treatments. P uptake kinetics of the roots were then determined with intact plants in short-term experiments by monitoring P depletion of a 3.5 L volume of nutrient solution in contact with the roots. Results show maximum influx, Imax, 5-fold higher in plants which had been raised in solution of low compared with high P concentration. Because P concentrations in the plants were increased with increase in external P concentration, Imax was negatively related to % P in shoots. Michaelis constants, Km, were also increased with increased pretreatment P concentration, only slightly with soybean, but by a factor of 3 with maize. The minimum P concentration, Cmin, where net influx equals zero, was found between 0.06 and 0.3 µmol L-1 with a tendency to increase with pretreatment P concentration. Filtration of solutions at the end of the depletion experiment showed that part of the external P was associated with solid particles. It was concluded that plants markedly adapt P uptake kinetics to their P status, essentially by the increase of Imax, when internal P concentration decreases. Changes of Km and Cmin were of minor importance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 159 (1994), S. 265-276 
    ISSN: 1573-5036
    Keywords: aluminum toxicity ; aluminium toxicity ; Arachis hypogaea L. ; Bradyrhizobium ; solution culture ; nodulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of low activities of the monomeric Al species, Al3+, Al(OH)2 + and Al(OH)2+, on the peanut/Bradyrhizobium symbiosis were examined in solution culture. In flowing solution culture, growth of the host plant was depressed at activities ≥5 μM. Neither shoot dry weight, root dry weight nor root length were inhibited by 3 μM Al, an activity which reduced nodule number by 70%. Low nodule number was compensated for, at this activity, by an increase in weight per nodule. In non-flowing solution culture of similar composition, survival of a streptomycin resistant mutant of Bradyrhizobium spp. NC92 in the bulk solution or in the rhizosphere of peanut roots was unaffected by 20 μM Al. The site of infection by Bradyrhizobium was examined by scanning electron microscopy. Lateral root axils of plants exposed to ≥2 μM Al did not display the rosette of multicellular root hairs which is characteristic in normal plants. The detrimental effects of Al on nodulation appear to be related to structural changes at the site of infection which are observed at Al activities too low to cause any depression in growth of the host plant, including root length, and at activities of Al which do not affect survival of the free-living Bradyrhizobium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: aluminium toxicity ; cowpea ; fulvic acid ; Glycine max (L.) Merr ; green gram ; malic acid ; momomeric aluminium ; oxalic acid ; soybean ; tap-root elongation ; Vigna radiata (L.) Wilczek ; Vigna unguiculata (L.) Walp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The role of fulvic, malic, and oxalic acids in alleviating the toxic effects of aluminium (Al) on tap-root elongation of soybean cv. Fitzroy, cowpea cv. Vita 4, and green gram cv. Berken was studied. Treatments consisted of a factorial combination of four Al concentrations (0, 12.5, 25 and 50 µM as Al(NO3)3·9H2O) and two concentrations either of malic or oxalic acid (0, 50 µM) or fulvic acid (0, 65 mg L-1 of organic carbon). The free monomeric Al in solution was determined using a pyrocatechol violet procedure which distinguishes between monomeric and organically complexed Al. Fulvic acid completely alleviated the toxic effect of Al at all concentrations on soybean and cowpea and at concentrations 〈25 µM on green gram. The non-toxic Al-fulvate complex remained in solution. Both malic and oxalic acid, at the concentrations tested, failed to alleviate Al toxicity on any species; a much higher proportion of the added Al remained in monomeric form in the presence of these acids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...