ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-02
    Description: The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e. U.S. Laboratory module) contain a fluid accumulator to accomodate thermal expansion of the system. Other element coolant loops are parasitic (i.e. Airlock), have no accumulator, and require an alternative approach to insure that the system maximum design pressure (MDP) is not exceeded during the Launch to Activation (LTA) phase. During this time the element loops is a stand alone closed system. The solution approach for accomodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Twelfth Thermal and Fluids Analysis Workshop; NASA/CP-2002-211783
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) is used for fluid transfer in many types of experiments. Reagents are handled in the MSG to prevent their accidental release into the cabin. However, the MSG is currently over-subscribed, creating a backlog of users in flight. As a recourse, current experiments are underway to assess the possibility of moving certain science operations from the MSG into the open cabin of the ISS. The experiments are designed to assess the efficacy of exploiting surface tension as a control to prevent the unwanted release of liquids. Dyed water currently serves as an ersatz for potentially more hazardous liquids. Common wet-lab operations such as de/mating wetted Luer-Lok fittings, liquid-bearing container lid removal, and pipetting between well plates are performed illustrating the facility and challenges imposed by the microgravity environment. Concerning the latter, various pipette cannula sizes are deployed at various injection, withdrawal, and translations rates to map the existence, size, velocity, and trajectory of satellite droplets expected to form when breaking contact between the water surface and the pipette tip. Though such drops frequently form in terrestrial operations, they are nearly imperceptible and inconsequentialdue in part to their speed and because gravity quickly returns them to the well plate from which they came. The use of airflow to capture and collect such satellite droplets is demonstrated. The dynamic stability of the liquid-filled well plates is quantified in response to a variety of crew-imparted disturbances. From a safety perspective, the results from the STCE are of immediate practical value. If such routine low-gravity capillary fluidic operations can be established as mundane, their performance may be moved out of the MSG and into the cabin, significantly increasing the efficiency of experiments performed on ISS.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN58986 , Annual Meeting of the American Society for Gravitational and Space Research; 31 Oct. 3 Nov. 2018; Bethesda, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: An independent study was performed to assess the pre-launch thermally induced stresses in the Space Shuttle External Tank Bipod closeout and Ice/Frost ramps (IFRs). Finite element models with various levels of detail were built that included the three types of foam (BX-265, NCFI 24-124, and PDL 1034) and the underlying structure and bracketry. Temperature profiles generated by the thermal analyses were input to the structural models to calculate the stress levels. An area of high stress in the Bipod closeout was found along the aluminum tank wall near the phenolic insulator and along the phenolic insulator itself. This area of high stress might be prone to cracking and possible delamination. There is a small region of slightly increased stress in the NCFI 24-124 foam near its joint with the Bipod closeout BX-265 foam. The calculated stresses in the NCFI 24-124 acreage foam are highest at the NCFI 24-124/PDL 1034/tank wall interface under the LO2 and LH2 IFRs. The highest calculated stresses in the LH2 NCFI 24-124 foam are higher than in similar locations in the LO2 IFR. This finding is consistent with the dissection results of IFRs on ET-120.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2008- 215102 , NESC-RP-06-55/06-012-I , L-19443
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Spacecraft testing specifications differ greatly in the criteria they specify for stability in thermal balance tests. Some specify a required temperature stabilization rate (the change in temperature per unit time, dT/dt), some specify that the final steady-state temperature be approached to within a specified difference, delta T , and some specify a combination of the two. The particular values for temperature stabilization rate and final temperature difference also vary greatly between specification documents. A one-size-fits-all temperature stabilization rate requirement does not yield consistent results for all test configurations because of differences in thermal mass and heat transfer to the environment. Applying a steady-state temperature difference requirement is problematic because the final test temperature is not accurately known a priori, especially for powered configurations. In the present work, a simplified, lumped-mass analysis has been used to explore the applicability of these criteria. A new, user-friendly, physics-based approach is developed that allows the thermal engineer to determine when an acceptable level of temperature stabilization has been achieved. The stabilization criterion can be predicted pre-test but must be refined during test to allow verification that the defined level of temperature stabilization has been achieved.
    Keywords: Spacecraft Design, Testing and Performance
    Type: LF99-8634 , 25th Aerospace Testing Seminar; Oct 13, 2009 - Oct 15, 2009; Manhattan Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: An active thermal control system architecture has been modified to include a regenerative heat exchanger (regenerator) inboard of the radiator. Rather than using a radiator bypass valve a regenerative heat exchanger is placed inboard of the radiators. A regenerator cold side bypass valve is used to set the return temperature. During operation, the regenerator bypass flow is varied, mixing cold radiator return fluid and warm regenerator outlet fluid to maintain the system setpoint. At the lowest heat load for stable operation, the bypass flow is closed off, sending all of the flow through the regenerator. This lowers the radiator inlet temperature well below the system set-point while maintaining full flow through the radiators. By using a regenerator bypass flow control to maintain system setpoint, the required minimum heat load to avoid radiator freezing can be reduced by more than half compared to a radiator bypass system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: MSC-24423-1 , NASA Tech Briefs, March 2011; 23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...