ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Space Radiation  (8)
  • 1
    Publication Date: 2011-08-23
    Description: It is shown in this study that two different types of spectral emission are generally produced in gamma-ray bursts. A subset of bursts is identified that exhibits a marked lack of fluence above 300 keV, and these bursts are shown to have luminosities about an order of magnitude lower than bursts with significant fluence above 300 keV. The bursts lacking emission above 300 keV exhibit an effectively homogeneous intensity distribution. In addition, it is shown that both types of emission are common in many bursts, demonstrating that a single source object is capable of generating both of them. These results strongly favor a gamma-ray burst source object that produces two different types of emission with varying degrees of superposition. The impact of this behavior is strong enough that it affects the properties of the burst intensity distribution, as well as the burst spectral characteristics.
    Keywords: Space Radiation
    Type: Astrophysical Journal; Volume 489; 175-198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: The current scenario for gamma-ray bursts (GRBs) involves internal shocks for the prompt GRB emission phase and external shocks for the afterglow phase. Assuming synchrotron emission from energetic shocked electrons. GRB spectra observed with a low-energy power-law spectral index greater than -2/3 (for positive photon number indices E(sup alpha) indicate a problem with this model. The remaining spectra can test the synchrotron shock model prediction that the emission from a single distribution of electrons, cooling rapidly, is responsible for both the low-energy and high-energy power-low portions of the spectra. We find that the inferred relationship between the two spectral indices of observed GRB spectra is inconsistent with the constraints from the model, posing another problem for the synchrotron shock emission model. To overcome this problem, we describe a model where the average of -1, rather than the value of -3/2 predicted for cooling electrons. Situations where this might arise have been discussed in other contexts, and involve deceleration of the internal shocks during the GRB phase.
    Keywords: Space Radiation
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We analyze time-averaged spectra from 86 bright gamma-ray bursts from the first 5 years of the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory to determine whether the lowest energy data are consistent with a standard spectra form fit to the data at all energies. The BATSE Spectroscopy Detectors have the capability to observe photons as low as 5 keV. Using the gamma-ray burst locations obtained with the BATSE Large Area Detectors, the Spectroscopy Detectors' low-energy response can be modeled accurately. This, together with a postlaunch calibration of the lowest energy Spectroscopy Detector discriminator channel, which can lie in the range 5-20 keV, allows spectral deconvolution over a broad energy range, approx. 5 keV to 2 MeV. The additional coverage allows us to search for evidence of excess emission, or for a deficit, below 20 keV. While no burst has a significant (greater than or equal to 3 sigma) deficit relative to a standard spectra model, we find that 12 bursts have excess low-energy emission, ranging between 1.2 and 5.8 times the model flux, that exceeds 5 sigma in significance. This is evidence for an additional low-energy spectral component in at least some bursts, or for deviations from the power-law spectral form typically used to model gamma-ray bursts at energies below 100 keV.
    Keywords: Space Radiation
    Type: N ASA-CR-204724 , NAS 1.26:204724 , The Astrophysical Journal; 473; 1; 310-321
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: GRB 990123 was the first burst from which simultaneous optical, X-ray, and gamma-ray emission was detected; its afterglow has been followed by an extensive set of radio, optical, and X-ray observations. We have studied the gamma-ray burst itself as observed by the Compton Gamma Ray Observatory detectors. We find that gamma-ray fluxes are not correlated with the simultaneous optical observations and that the gamma-ray spectra cannot be extrapolated simply to the optical fluxes. The burst is well fitted by the standard four-parameter GRB function, with the exception that excess emission compared with this function is observed below approx. 15 keV during some time intervals. The burst is characterized by the typical hard-to-soft and hardness-intensity correlation spectral evolution patterns. The energy of the peak of the vf (sub v), spectrum, E (sub p), reaches an unusually high value during the first intensity spike, 1470 plus or minus 110 keV, and then falls to approx. 300 keV during the tail of the burst. The high-energy spectrum above approx. 1 MeV is consistent with a power law with a photon index of about -3. By fluence, GRB 990123 is brighter than all but 0.4% of the GRBs observed with BATSE (Burst and Transient Source Experiment), clearly placing it on the -3/2 power-law portion of the intensity distribution. However, the redshift measured for the afterglow is inconsistent with the Euclidean interpretation of the -3/2 power law. Using the redshift value of greater than or equal to 1.61 and assuming isotropic emission, the gamma-ray energy exceeds 10 (exp 54) ergs.
    Keywords: Space Radiation
    Type: Astrophysical Journal; 524; 82-91
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: It is shown in this study that two different types of spectral emission are generally produced in gamma-ray bursts. A subset of bursts is identified that exhibits a marked lack of fluence above 300 keV, and these bursts are shown to have luminosities about an order of magnitude lower than bursts with significant fluence above 300 keV. The bursts lacking emission above 300 keV exhibit an effectively homogeneous intensity distribution. In addition, it is shown that both types of emission are common in many bursts, demonstrating that a single source object is capable of generating both of them. These results strongly favor a gamma-ray burst source object that produces two different types of emission with varying degrees of superposition. The impact of this behavior is strong enough that it affects the properties of the burst intensity distribution, as well as the burst spectral characteristics.
    Keywords: Space Radiation
    Type: Astrophysical Journal; 489; 175
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: LOTIS is a gamma-ray burst optical counterpart search experiment located near Lawrence Livermore National Laboratory in California. Since operations began in 1996 October, LOTIS has responded to five triggers as of 1997 July 30, which occurred during good weather conditions. GR-B 970223 (BATSE trigger 6100) was an exceptionally strong burst, lasting approx. 30 s with a peak at approx. 8 s. LOTIS began imaging the error box approx. 11 s after the burst began and achieved simultaneous optical coverage of 100% of the region enclosed by the BATSE 3 sigma error circle and the interplanetary network annulus. No optical transients were observed brighter than the m{}_{V} approx.11 completeness limit of the resulting images, providing a new upper limit on the ratio of simultaneous optical to gamma-ray fluence of R-{L) less than 1.1 x 10 logical and {-4} and on the ratio of simultaneous optical (at 700 mn) to gamma-ray (at 100 keV) flux density of R-{F} less than 305 for a B-type spectrum and R-{F} less than 475 for an M-type spectrum.
    Keywords: Space Radiation
    Type: Astrophysical Journal Letters; 490; L21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: The Gamma-Ray Optical Counterpart Search Experiment presents new experimental upper limits on the optical flux from gamma-ray bursts (GRBs). Our experiment consisted of a fully automated very wide-field opto-electronic detection system that imaged locations of GRBs within a few seconds of receiving trigger signals provided by BATSE's real-time burst coordinate distribution network. The experiment acquired 3800 observing hours, recording 22 gamma-ray burst triggers within approx. 30 s of the start of the burst event. Some of these bursts were imaged while gamma-ray radiation was being detected by BATSE. We identified no optical counterparts associated with gamma-ray bursts among these events at the mV approx. 7.0-8.3 sensitivity level. We find the ratio of the upper limit to the V-band optical flux, F nu, to the gamma-ray fluence, Phi gamma, from these data to be 1 x 10(exp-18) less than F nu Phi gamma less than 2 x 10(exp -16).
    Keywords: Space Radiation
    Type: Astrophysical Journal; 490; 99
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-15
    Description: Relativistic shock models of gamma-ray bursts may be tested by comparing their predicted low-energy asymptotic spectral indices s to observations. Synchrotron radiation theory predicts that the instantaneous spectrum has s = 1/3, and the spectrum integrated over the radiative decay of the electrons' energies has s = 1/2 with other cases lying between these limits. We examine the spectra of 11 bursts obtained by the Large Area Detectors on BATSE. One agrees with the predicted instantaneous spectrum, as does the initial portion of a second, and three are close to the predicted integrated spectrum. All of the observed asymptotic spectral slopes lie in the predicted range. This evidence for relativistic shocks is independent of detailed models of bursts and of assumptions about their distances. Radiation observed with the predicted instantaneous spectrum has a comparatively smooth time dependence, consistent with the necessarily long radiation time, while radiation observed with the predicted integrated spectrum has a spiky time dependence, consistent with the necessarily short radiation time.
    Keywords: Space Radiation
    Type: Astrophysical Journal; 488; 1; 330-337
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...