ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 77 (1989), S. 153-161 
    ISSN: 1432-2242
    Keywords: Seed regeneration ; Sample size ; Random genetic drift ; Effective population size ; Allele frequency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The main purpose of germplasm banks is to preserve the genetic variability existing in crop species. The effectiveness of the regeneration of collections stored in gene banks is affected by factors such as sample size, random genetic drift, and seed viability. The objective of this paper is to review probability models and population genetics theory to determine the choice of sample size used for seed regeneration. A number of conclusions can be drawn from the results. First, the size of the sample depends largely on the frequency of the least common allele or genotype. Genotypes or alleles occurring at frequencies of more than 10% can be preserved with a sample size of 40 individuals. A sample size of 100 individuals will preserve genotypes (alleles) that occur at frequencies of 5%. If the frequency of rare genotypes (alleles) drops below 5%, larger sample sizes are required. A second conclusion is that for two, three, and four alleles per locus the sample size required to include a copy of each allele depends more on the frequency of the rare allele or alleles than on the number. Samples of 300 to 400 are required to preserve alleles that are present at a frequency of 1%. Third, if seed is bulked, the expected number of parents involved in any sample drawn from the bulk will be less than the number of parents included in the bulk. Fourth, to maintain a rate of breeding (F) of 1 %, the effective population size (N e) should be at least 150 for three alleles, and 300 for four alleles. Fifth, equalizing the reproductive output of each family to two progeny doubles the effective size of the population. Based on the results presented here, a practical option is considered for regenerating maize seed in a program constrained by limited funds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 86 (1993), S. 673-678 
    ISSN: 1432-2242
    Keywords: Genetic resources conservation ; Sample size ; Allele frequency ; Probability models ; Core subsets
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract One objective of the regeneration of genetic populations is to maintain at least one copy of each allele present in the original population. Genetic diversity within populations depends on the number and frequency of alleles across all loci. The objectives of this study on outbreeding crops are: (1) to use probability models to determine optimal sample sizes for the regeneration for a number of alleles at independent loci; and (2) to examine theoretical considerations in choosing core subsets of a collection. If we assume that k-1 alleles occur at an identical low frequency of p0 and that the kth allele occurs at a frequency of 1-[(k-1)p0], for loci with two, three, or four alleles, each with a p0 of 0.05, 89–110 additional individuals are required if at least one allele at each of 10 loci is to be retained with a 90% probability; if 100 loci are involved, 134–155 individuals are required. For two, three, or four alleles, when p0 is 0.03 at each of 10 loci, the sample size required to include at least one of the alleles from each class in each locus is 150–186 individuals; if 100 loci are involved, 75 additional individuals are required. Sample sizes of 160–210 plants are required to capture alleles at frequencies of 0.05 or higher in each of 150 loci, with a 90–95% probability. For rare alleles widespread throughout the collection, most alleles with frequencies of 0.03 and 0.05 per locus will be included in a core subset of 25–100 accessions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...