ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • SPACECRAFT DESIGN, TESTING AND PERFORMANCE  (1)
  • Space Sciences (General)  (1)
  • Spacecraft Design, Testing and Performance  (1)
  • Structural Mechanics  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-06-28
    Description: The Small Expendable Deployer System (SEDS) was designed to deploy an endmass at the end of a 20-km-long tether which acts as an upper stage rocket, and the threats from the meteoroid and orbital debris (M/OD) particle environments on SEDS components are important issues for the safety and success of any SEDS mission. However, the possibility of severing the tether due to M/OD particle impacts is an even more serious concern, since the SEDS tether has a relatively large exposed area to the M/OD environments although its diameter is quite small. The threats from the M/OD environments became a very important issue for the third SEDS mission, since the project office proposed using the shuttle orbiter as a launch platform instead of the second stage of a Delta II expendable rocket, which was used for the first two SEDS missions. A series of hyper-velocity impact tests were performed at the Johnson Space Center and Arnold Engineering Development Center to help determine the critical particle sizes required to sever the tether. The computer hydrodynamic code or hydrocode called CTH, developed by the Sandia National Laboratories, was also used to simulate the damage on the SEDS tether caused by both the orbital debris and test particle impacts. The CTH hydrocode simulation results provided the much needed information to help determine the critical particle sizes required to sever the tether. The M/OD particle sizes required to sever the tether were estimated to be less than 0.1 cm in diameter from these studies, and these size particles are more abundant in low-Earth orbit than larger size particles. Finally, the authors performed the M/OD damage analyses for the three SEDS missions; i.e., SEDS-1, -2, and -3 missions, by using the information obtained from the hypervelocity impact test and hydrocode simulations results.
    Keywords: Space Sciences (General)
    Type: NASA/TP-97-206311 , NAS 1.60:206311 , M-843
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: This document is prepared to provide a systematic process for the selection of tethers for space applications. Criteria arc provided for determining the strength requirement for tether missions and for mission success from tether severing due to micrometeoroids and orbital debris particle impacts. Background information of materials for use in space tethers is provided, including electricity-conducting tethers. Dynamic considerations for tether selection is also provided. Safety, quality, and reliability considerations are provided for a tether project.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA-TM-108537 , NAS 1.15:108537
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: This report summarizes the damage analyses performed on the tether cable used for the tethered satellite system (TSS), for the damage that could be caused by meteoroid or orbital debris impacts. The TSS consists of a tethered satellite deployer and a tethered satellite. The analytical studies were performed at Marshall Space Flight Center (MSFC) with the results from the following tests: (1) hypervelocity impact tests to determine the 'critical' meteoroid particle diameter, i.e., the maximum size of a meteoroid particle which can impact the tether cable without causing 'failure'; (2) electrical resistance tests on the damaged and undamaged tether cable to determine if degradation of current flow occurred through the damaged tether cables; and (3) tensile load tests to verify the load carrying capability of the damaged tether cables. Finally, the HULL hydrodynamic computer code was used to simulate the hypervelocity impact of the tether cable by particles at velocities higher than can be tested, to determine the extent of the expected tether damage.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-108404 , NAS 1.15:108404
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: This report compares seven double-plate penetration predictor equations for accuracy and effectiveness of a shield design. Three of the seven are the Johnson Space Center original, modified, and new Cour-Palais equations. The other four are the Nysmith, Lundeberg-Stern-Bristow, Burch, and Wilkinson equations. These equations, except the Wilkinson equation, were derived from test results, with the velocities ranging up to 8 km/sec. Spreadsheet software calculated the projectile diameters for various velocities for the different equations. The results were plotted on projectile diameter versus velocity graphs for the expected orbital debris impact velocities ranging from 2 to 15 km/sec. The new Cour-Palais double-plate penetration equation was compared to the modified Cour-Palais single-plate penetration equation. Then the predictions from each of the seven double-plate penetration equations were compared to each other for a chosen shield design. Finally, these results from the equations were compared with test results performed at the NASA Marshall Space Flight Center. Because the different equations predict a wide range of projectile diameters at any given velocity, it is very difficult to choose the "right" prediction equation for shield configurations other than those exactly used in the equations' development. Although developed for various materials, the penetration equations alone cannot be relied upon to accurately predict the effectiveness of a shield without using hypervelocity impact tests to verify the design.
    Keywords: Structural Mechanics
    Type: NASA/TM-2000-209907 , NAS 1.15:209907 , M-962
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...