ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-01-26
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Riverbed clogging is key to assessing vertical connectivity in the hyporheic zone and is often quantified using single‐parameter or qualitative approaches. However, clogging is driven by multiple, interacting physical and bio‐geochemical parameters, which do not allow for a conclusive assessment of hyporheic connectivity with single‐parameter approaches. In addition, existing qualitative assessments lack transparency and repeatability. This study introduces a Multi‐Parameter Approach to quantify Clogging and vertical hyporheic connectivity (MultiPAC), which builds on standardized measurements of physical (grain size characteristics, porosity, hydraulic conductivity) and bio‐geochemical (interstitial dissolved oxygen) parameters. We apply MultiPAC at three gravel‐bed rivers and show how the set of parameters provides a representative appreciation of physical riverbed clogging, thus quantifying vertical hyporheic connectivity. However, more parameters are required to fully characterize biological clogging. In addition, MultiPAC locates clogged layers in the hyporheic zone through multi‐parameter vertical profiles over the riverbed depth. The discussion outlines the relevance of MultiPAC to guide field surveys.〈/p〉
    Description: https://github.com/Ecohydraulics/kf-converter-w-flopy
    Keywords: ddc:550.724 ; colmation ; dissolved oxygen ; grain size ; hydraulic conductivity ; porosity ; siltation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: Marangoni flow was induced in a thin disk of molten tin with an atomically clean surface by heating it from below in an ultra high vacuum apparatus. The radial distribution of temperature was measured and no temperature oscillations were observed. Strong mechanical disturbances introduced at a Marangoni number of about 4300 died out quickly with time indicating that the system was stable. Mathematical models indicate that strong flows in a two cell structure exist under the conditions studied, and that the velocity profile in the cell near the surface is of the boundary layer type which varies rapidly with depth.
    Keywords: SOLID-STATE PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 4; 5, 19; 15-22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Using electron loss spectroscopy in combination with ion beam depth profiling, it has been established that the oxide of tin formed by electropolishing followed by room temperature aging is metal free and composed of a mixture of SnO2 and SnO. In a fresh oxide layer, the SnO2 is confined to the outer portion of the predominantly SnO oxide. In an aged oxide layer, SnO2 is present up to the oxide/metal interface with an ever decreasing concentration as the interface is approached.
    Keywords: SOLID-STATE PHYSICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...