ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (1)
Collection
Keywords
Publisher
Years
  • 1
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We have used the molecular dynamics (MD) simulation package AMBER4 to search the conformation of a peptide predicted as a leucine zipper motif for the human immunodeficiency virus type I integrase protein (HIV IN-LZM). The peptide is composed of 22 amino acid residues and its location is from Val 151 to Leu 172. The searching procedure also includes two known α-helices that served as positive controls - namely, a 22-residue GCN4-p1 (LZM) and a 20-residue poly(L-alanine) (PLA). A 21-residue peptide extracted from a cytochrome C crystal (CCC-t) with determined conformation as a β-turn is also included as a negative control. At the beginning of the search, two starting conformations - namely, the standard right-handed α-helix and the fully stretched conformations - are generated for each peptide. Structures generated as standard α-helix are equilibrated at room temperature for 90 ps while structures generated as a fully stretched one are equilibrated at 600 K for 120 ps. The CCC-t and PLA helices are nearly destroyed from the beginning of equilibration. However, for both the HIV IN-LZM and the GCN4-p1 LZM structures, there is substantial helicity being retained throughout the entire course of equilibration. Although helix propagation profiles calculated indicate that both peptides possess about the same propensity to form an α-helix, the HIV IN-LZM helix appears to be more stable than the GCN4-p1 one as judged by a variety of analyses on both structures generated during the equilibration course. The fact that predicted HIV IN-LZM can exist as an α-helix is also supported by the results of high temperature equilibration run on the fully stretched structures generated. In this run, the RMS deviations between the backbone atoms of the structures with the lowest potential energy (PE) identified within every 2 ps and the structure with the lowest PE searched in the same course of simulation are calculated. For both the HIV IN-LZM and the GCN4-p1 LZM, these rms values decrease with the decrease of PE, which indicates that both structures are closer in conformations as their PEs are moved deeper into the PE well. © 1994 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...