ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Polymer and Materials Science  (3)
Sammlung
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Digitale Medien
    Digitale Medien
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 24 (1990), S. 471-488 
    ISSN: 0021-9304
    Schlagwort(e): Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin , Technik allgemein
    Notizen: The surface reactions of calcium phosphate ceramics have been thought to play an important role in bonding with living bone. Hydroxyapatite (HA), tricalcium phosphate (TCP), and two kinds of apatite-containing glass ceramics were immersed in three types of solutions with different chemical constituents. The first solution was a physiological saline, the second contained phosphate (PO4), and the third was a balanced salt solution consisting of calcium (Ca), magnesium (Mg), and PO4. After serial incubation periods, changes in the solutions were assessed by measurement of total Ca, Mg, and PO4. The ceramic surfaces were studied using scanning electron spectroscopy, infrared reflection spectroscopy, and thin-film x-ray diffraction. The surface reactions of the ceramics were greatly affected by the chemical compositions of the surrounding media. In the complete solution with both Ca and PO4, a carbonated apatite layer was formed on the surfaces of HA, TCP, and the glass ceramics. In comparison to HA and TCP, the glass ceramics were characterized as Ca-releasing materials, the dissolved Ca creating an apatite layer on the surfaces in a few days, in conjunction with PO4 stock in the surrounding media. The immersion test with various solutions proved to be a simple and effective method of assessing surface conditions of ceramic materials.
    Zusätzliches Material: 9 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 0021-9304
    Schlagwort(e): Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin , Technik allgemein
    Notizen: We have produced three kinds of apatite-containing glass ceramics of the same chemical composition: MgO (4.6), CaO (44.9), SiO2 (34.2), P2O5 (16.3), CaF2 (0.5) (in weight ratio). They contain different crystal combinations and have different mechanical properties.The first glass ceramic (A-;GC) was prepared by heating a glass plate to 870°C. It contains only oxy- and fluoroapatite (35 wt%). The second glass ceramic (A-W-GC), and the third (A-W-CP-GC), were prepared by heating glass powder compacts to 1050°C and 1200°C, respectively. A-W-GC contains oxyapatite and fluoroapatite (Ca10(PO4)6(O,F2)) (35 wt%) and β-wollastonite (40 wt%). A-W-CP-GC contains oxyapatite and fluoroapatite (20 wt%), β-wollastonite (CaO·SiO2) (55 wt%), and β-whitlockite (3CaO·P2O5) (15 wt%). The bending strengths of A-;GC, A-W-GC, and A-W-CP-GC were 88MPa, 178MPa, and 213MPa, respectively, in air.Rectangular ceramic plates (15mm × 10mm × 2mm) were implanted into a rabbit tibia. Ten and 25 weeks after implantation, the segment of tibia with implant was excised for examination. The segment was held by a special jig and the traction breaking load (failure load) was measured by an autograph.A-;GC showed a lower load than A-W-GC and A-W-CP-GC. The loads for A-W-GC and A-W-CP-GC were almost equal. The failure loads did not change significantly between 10 and 25 weeks for any of the materials.The interface was examined by Giemsa surface staining, contact micro-radiography, and SEM-EPMA. Giemsa surface staining and CMR revealed direct bonding between the materials and the bone for all the three materials.SEM-EPMA showed that Si and Mg content decreased, Ca content did not change, and P content increased at the reaction zone between all three glass ceramics and bone. This was observed at 10 weeks, as well as at 25 weeks, after implantation. The reaction zone was narrowest with A-;GC, wider with A-W-GC, and widest with A-W-CP-GC.
    Zusätzliches Material: 6 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 0021-9304
    Schlagwort(e): Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin , Technik allgemein
    Notizen: The cytotoxicity of hydroxyapatite (HA), tricalcium phosphate (TCP), and two types of phosphate (TCP), and two types of apatite-containing glass-ceramics designated A · W-GC and A · W · CP-GC was evaluated by the direct contact method using V79 cells. Compatibility of the cells was assessed as a function of cellular attachment and subsequent growth using scanning electron microscopy. Although all of the tested materials have surfaces available for cellular attachment, cell growth was markedly inhibited by HA sintered at 600°C and 900°C, and slightly inhibited by HA sintered at 1200°C, TCP and the glass-ceramics. In attempts to clarify the cause of this toxicity, the interactions of the ceramics with culture medium was assessed by measurement of calcium (Ca), inorganic phosphate (P), magnesium (Mg), pH and albumin content in the medium. The grade of toxicity corresponded to the degree of reduction of Ca, P, and albumin in the medium. Furthermore, surface reactions of the ceramics were demonstrated to vary in both mode and degree depending on their chemical structure and level of microporosity. Thus, the surface reactivity of ceramic materials should be always taken into account in discussing their biocompatibility in vivo.
    Zusätzliches Material: 9 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...