ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (1)
  • microemulsion  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 36 (1998), S. 2727-2734 
    ISSN: 0887-624X
    Keywords: molecular imprinting ; adsorption ; surface template polymerization ; bifunctional monomer ; ion exchange resin ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The interfacial activity and the molecular structure of functional monomers are critical factors that determine the success of synthesizing metal-imprinted polymers by surface template polymerization. From this point of view, first we prepared three distinct novel bifunctional organophosphorus monomers that are interspaced, in each case, by an alkyl spacer having a specific length. Each monomer carries two phosphonic acid groups and two aromatic groups in its molecular structures. Further, by using the synthesized bifunctional monomers, we prepared highly selective Zn(II)-imprinted polymers by the surface template polymerization initiated from a water-in-oil emulsion. To evaluate the template effect, we conducted diagnostic adsorption studies on Zn(II)-imprinted and unimprinted polymers with zinc ions. A high interfacial activity was found to be required for the functional monomers to create the predominant template effect. It became clear that Zn(II)-imprinted polymers having bifuctional monomers with 12-length alkyl chains (1,12-dodecanediol-O, O′-diphenyl phosphonic acid: DDDPA) yielded the best results. Moreover, analysis results of adsorption behavior supported a high-performance of the Zn(II)-imprinted polymers with DDDPA. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2727-2734, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 54 (1997), S. 26-32 
    ISSN: 0006-3592
    Keywords: reversed micelle ; microemulsion ; protein extraction ; surfactant ; bioseparation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: New surfactants have been synthesized for potential use in reversed micellar protein extraction operations. Preferential solubility of the surfactant in an aliphatic solvent such as hexane, heptane, or isooctane and the formation of reversed micelles accompanied with solubilization of significant quantities of water can be achieved by using strongly hydrophobic, twin alkyl chains as the hydrophobic moiety. Different surfactants having identical water-solubilizing capacities can have significantly different behavior in protein extractions, where extraction efficiency appears to be governed by the nature of the interfacial complex that forms between surfactants and proteins. Bulky surfactant chains provide a steric hindrance to the adsorption of the surfactant to the protein surface, thus inhibiting solvation of the protein/surfactant complex, and hence protein extraction. Under these conditions, a precipitate forms either in the bulk aqueous phase or at the interface. Surfactants that can form a close-packed complex with the protein are excellent protein-solubilizing agents. Dioleyl phosphoric acid (DOLPA) appears to be the best surfactant currently available for protein extraction. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 26-32, 1997.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...