ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-06-26
    Description: The heme-copper oxidases (HCOs) accomplish the key event of aerobic respiration; they couple O2 reduction and transmembrane proton pumping. To gain new insights into the still enigmatic process, we structurally characterized a C-family HCO--essential for the pathogenicity of many bacteria--that differs from the two other HCO families, A and B, that have been structurally analyzed. The x-ray structure of the C-family cbb3 oxidase from Pseudomonas stutzeri at 3.2 angstrom resolution shows an electron supply system different from families A and B. Like family-B HCOs, C HCOs have only one pathway, which conducts protons via an alternative tyrosine-histidine cross-link. Structural differences around hemes b and b3 suggest a different redox-driven proton-pumping mechanism and provide clues to explain the higher activity of family-C HCOs at low oxygen concentrations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buschmann, Sabine -- Warkentin, Eberhard -- Xie, Hao -- Langer, Julian D -- Ermler, Ulrich -- Michel, Hartmut -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):327-30. doi: 10.1126/science.1187303. Epub 2010 Jun 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biophysik, Max-von-Laue-Strasse 3, D-60438 Frankfurt/Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20576851" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Cytoplasm/metabolism ; Electron Transport ; Electron Transport Complex IV/*chemistry/*metabolism ; Heme/chemistry ; Histidine/chemistry ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Oxygen/metabolism ; Periplasm/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proton Pumps/*chemistry/*metabolism ; *Protons ; Pseudomonas stutzeri/*enzymology ; Tyrosine/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-12-31
    Description: Methyl-coenzyme M reductase (MCR), the enzyme responsible for the microbial formation of methane, is a 300-kilodalton protein organized as a hexamer in an alpha2beta2gamma2 arrangement. The crystal structure of the enzyme from Methanobacterium thermoautotrophicum, determined at 1.45 angstrom resolution for the inactive enzyme state MCRox1-silent, reveals that two molecules of the nickel porphinoid coenzyme F430 are embedded between the subunits alpha, alpha', beta, and gamma and alpha', alpha, beta', and gamma', forming two identical active sites. Each site is accessible for the substrate methyl-coenzyme M through a narrow channel locked after binding of the second substrate coenzyme B. Together with a second structurally characterized enzyme state (MCRsilent) containing the heterodisulfide of coenzymes M and B, a reaction mechanism is proposed that uses a radical intermediate and a nickel organic compound.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ermler, U -- Grabarse, W -- Shima, S -- Goubeaud, M -- Thauer, R K -- New York, N.Y. -- Science. 1997 Nov 21;278(5342):1457-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biophysik, Heinrich-Hoffmann-Strabetae 7, 60528 Frankfurt, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9367957" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Coenzymes/chemistry/metabolism ; Crystallography, X-Ray ; Disulfides/chemistry/metabolism ; Hydrogen/metabolism ; Hydrogen Bonding ; Ligands ; Mesna/analogs & derivatives/chemistry/metabolism ; Metalloporphyrins/chemistry/metabolism ; Methane/*metabolism ; Methanobacterium/*enzymology ; Models, Molecular ; Nickel/chemistry/metabolism ; Oxidation-Reduction ; Oxidoreductases/*chemistry/*metabolism ; Phosphothreonine/analogs & derivatives/chemistry/metabolism ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-29
    Description: The anaerobic oxidation of methane (AOM) with sulphate, an area currently generating great interest in microbiology, is accomplished by consortia of methanotrophic archaea (ANME) and sulphate-reducing bacteria. The enzyme activating methane in methanotrophic archaea has tentatively been identified as a homologue of methyl-coenzyme M reductase (MCR) that catalyses the methane-forming step in methanogenic archaea. Here we report an X-ray structure of the 280 kDa heterohexameric ANME-1 MCR complex. It was crystallized uniquely from a protein ensemble purified from consortia of microorganisms collected with a submersible from a Black Sea mat catalysing AOM with sulphate. Crystals grown from the heterogeneous sample diffract to 2.1 A resolution and consist of a single ANME-1 MCR population, demonstrating the strong selective power of crystallization. The structure revealed ANME-1 MCR in complex with coenzyme M and coenzyme B, indicating the same substrates for MCR from methanotrophic and methanogenic archaea. Differences between the highly similar structures of ANME-1 MCR and methanogenic MCR include a F(430) modification, a cysteine-rich patch and an altered post-translational amino acid modification pattern, which may tune the enzymes for their functions in different biological contexts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shima, Seigo -- Krueger, Martin -- Weinert, Tobias -- Demmer, Ulrike -- Kahnt, Jorg -- Thauer, Rudolf K -- Ermler, Ulrich -- England -- Nature. 2011 Nov 27;481(7379):98-101. doi: 10.1038/nature10663.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Terrestrial Microbiology, Karl-Frisch-Strasse 10, D-35043 Marburg, Germany. shima@mpi-marburg.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22121022" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Archaea/*enzymology/isolation & purification/metabolism ; *Biocatalysis ; Black Sea ; Catalytic Domain ; Coenzymes/chemistry/metabolism ; Crystallography, X-Ray ; Cysteine/metabolism ; Expeditions ; Methane/*metabolism ; Models, Molecular ; Oxidation-Reduction ; Oxidoreductases/*chemistry/*metabolism ; Protein Conformation ; Seawater/*microbiology ; Ships ; Sulfates/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-07-26
    Description: Biological formation and consumption of molecular hydrogen (H2) are catalyzed by hydrogenases, of which three phylogenetically unrelated types are known: [NiFe]-hydrogenases, [FeFe]-hydrogenases, and [Fe]-hydrogenase. We present a crystal structure of [Fe]-hydrogenase at 1.75 angstrom resolution, showing a mononuclear iron coordinated by the sulfur of cysteine 176, two carbon monoxide (CO) molecules, and the sp2-hybridized nitrogen of a 2-pyridinol compound with back-bonding properties similar to those of cyanide. The three-dimensional arrangement of the ligands is similar to that of thiolate, CO, and cyanide ligated to the low-spin iron in binuclear [NiFe]- and [FeFe]-hydrogenases, although the enzymes have evolved independently and the CO and cyanide ligands are not found in any other metalloenzyme. The related iron ligation pattern of hydrogenases exemplifies convergent evolution and presumably plays an essential role in H2 activation. This finding may stimulate the ongoing synthesis of catalysts that could substitute for platinum in applications such as fuel cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shima, Seigo -- Pilak, Oliver -- Vogt, Sonja -- Schick, Michael -- Stagni, Marco S -- Meyer-Klaucke, Wolfram -- Warkentin, Eberhard -- Thauer, Rudolf K -- Ermler, Ulrich -- New York, N.Y. -- Science. 2008 Jul 25;321(5888):572-5. doi: 10.1126/science.1158978.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Terrestrische Mikrobiologie and Laboratorium fur Mikrobiologie, Fachbereich Biologie, Philipps-Universitat Marburg, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany. shima@mpi-marburg.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18653896" target="_blank"〉PubMed〈/a〉
    Keywords: Apoenzymes/chemistry ; Binding Sites ; Carbon Monoxide/chemistry ; Catalytic Domain ; Coenzymes/chemistry ; Crystallography, X-Ray ; Cyanides/chemistry/metabolism ; Dimerization ; Evolution, Molecular ; Holoenzymes/chemistry ; Hydrogen/chemistry/*metabolism ; Hydrogenase/*chemistry/isolation & purification/metabolism ; Iron/chemistry ; Ligands ; Methane/biosynthesis ; Methanococcales/*enzymology ; Models, Molecular ; Oxidation-Reduction ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...