ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • hydrology  (3)
  • Organic S  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 5 (1987), S. 258-264 
    ISSN: 1432-0789
    Keywords: C-bonded S ; Mineralization ; Organic S
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Total S, organic S and sulfate were measured in foliage, litter, roots, soil and solutions at a hardwood site within the Adirondack Mountains of New York. Sulfate as a percentage of total S was similar in foliage and litter (10%), but was greater in roots (30%). Sulfur constituents in the hardwood forest ecosystem were dominated by C-bonded S (60 g m−2) and ester sulfate (16 g m−2) which are formed by biological processes. Because sulfur mineralization (1.42 g m−2 yr−1) was greater than wet precipitation inputs (0.82 g m−2 yr−1), those factors that influence mineralization-immobilization processes are important in evaluating S cycling and sulfate fluxes in this ecosystem. Ester sulfate was formed within the forest floor by the soil biota and was leached to mineral horizons. Annual turnover of this pool was high (25%) within the mineral forest floor. Forest-floor C-bonded S was derived from root and above-ground litter, and substantial amounts were leached to mineral horizons. Calculated storage + outputs (1.64 g m−2 yr−1) was much greater than wet inputs (0.82 g m−2 yr−1).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-2932
    Keywords: atmospheric deposition ; ecosystem ; hydrology ; nitrogen ; sulfur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Information on atmospheric inputs, water chemistry and hydrology were combined to evaluate elemental mass balances and assess temporal changes in elemental transport from 1983 through 1992 for the Arbutus Lake watershed. This watershed is located within a northern hardwood ecosystem at the Huntington Forest within the central Adirondack Mountains of New York (USA). Changes in water chemistry, including increasing NO3 − concentrations (1.1 μmol c , L−1 yr-1), have been detected during this study period. Starting in 1991 hydrological flow has been measured from Arbutus Lake and these measurements were compared with predicted flow using the BROOK2 hydrological simulation model. The model adequately (r2=0.79) simulated flow from this catchment and was used to estimate drainage for earlier periods when direct hydrological measurements were not available. Modeled drainage water losses coupled with estimates of wet and dry atmospheric deposition were used to calculate solute budgets. Export of SO4 2− (831 mol c ha−1 yr−1) from the greater Arbutus Lake watershed exceeded estimates of atmospheric deposition in an adjacent hardwood stand suggesting an additional source of S. These large drainage losses of SO4 2− also contributed to the drainage fluxes of basic cations (Ca2+, Mg2+, K+ and Na+). Most of the atmospheric inputs of inorganic N were retained (average of 74% of wet precipitation and 85% total deposition) in the watershed. There were differences among years (56 to 228 mol ha−1 yr−1) in drainage water losses of N with greatest losses occurring during a warm, wet period (1989–1991).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-515X
    Keywords: Adirondack Mountains ; total organic nitrogen ; hydrology ; nitrogen retention ; nitrogen saturation ; watershed
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Nitrogen (N) dynamics were evaluated from 1 June 1995 through 31 May 1996 within the Arbutus Lake watershed in the Adirondack Mountains of New York State, USA. At the Arbutus Lake outlet dissolved organic nitrogen (DON), NO3 - and NH4 + contributed 61%, 33%, and 6% respectively, to the total dissolved nitrogen (TDN) flux (259 mol ha-1 yr-1). At the lake inlet DON, NO3 -, and NH4 - constituted 36%, 61%, and 3% respectively, of TDN flux (349 mol ha-1 yr-1). Differences between the factors that control DON, NO3 +, and NH4 + stream water concentrations were evaluated using two methods for estimating annual N flux at the lake inlet. Using biweekly sampling NO3 - and NH4 + flux was 10 and 4 mol ha-1 yr-1 respectively, less than flux estimates using biweekly plus storm and snowmelt sampling. DON flux was 18 mol ha-1 yr-1 greater using only biweekly sampling. These differences are probably not of ecological significance relative to the total flux of N from the watershed (349 mol ha-1 yr-1). Dissolved organic N concentrations were positively related to discharge during both the dormant (R2 = 0.31; P 〈 0.01) and growing season (R2 = 0.09; P 〈 0.01). There was no significant relationship between NO3 - concentration and discharge during the dormant season, but a significant negative relationship was found during the growing season (R2 = 0.29; P 〈 0.01). Biotic controls in the growing season appeared to have had a larger impact on stream water NO3 - concentrations than on DON concentrations. Arbutus Lake had a major impact on stream water N concentrations of the four landscape positions sampled, suggesting the need to quantify within lake processes to interpret N solute losses and patterns in watershed-lake systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 107 (1998), S. 219-235 
    ISSN: 1573-2932
    Keywords: hydrology ; nitrification ; nitrogen saturation ; streams
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Steam chemistry was investigated from May 1991 through April 1992 for 13 Japanese forested watersheds and from May 1990 through August 1994 for two of these watersheds. Nine watersheds were treated over different periods (1983–1991) with different amounts of N (nitrogen) fertilizer as urea and ammonium salts. Total N additions ranged from 20 to 375 kg ha-1. There were no distinct seasonal differences in stream NO3 - concentrations in either the treated or untreated watersheds, but concentrations tended to be somewhat higher during periods of high discharge. The annual average NO3 - concentrations in streams had a significant, positive (p 〈 0.001, r = 0.84) relationship to the total amount of N applied from 1985–1991. The application of 330 kg N ha-1 raised annual average stream NO3 - concentration to about 300 μeq L-1 compared to less than 160 μeq L-1 in untreated watersheds. The concentrations of K+, Ca2+, and Mg2+ in stream water also increased in those watersheds with high rates of N fertilizer as a result of nitrification that increased the generation of the mobile nitrate anion. The lack of seasonality in stream NO3 - concentrations and the large rates of N loss with N addition both suggest that these watersheds were ‘nitrogen saturated’
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...