ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OH  (1)
  • climate change  (1)
  • 1
    ISSN: 1573-2932
    Keywords: climate change ; global change ; integrated assessment ; integrated models ; scenario analysis ; carbon cycle ; biofuels
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract This paper presents scenarios computed with IMAGE 2.0, an integrated model of the global environment and climate change. Results are presented for selected aspects of the society-biosphere-climate system including primary energy consumption, emissions of various greenhouse gases, atmospheric concentrations of gases, temperature, precipitation, land cover and other indicators. Included are a “Conventional Wisdom” scenario, and three variations of this scenario: (i) the Conventional Wisdom scenario is a reference case which is partly based on the input assumptions of the IPCC's IS92a scenario; (ii) the “Biofuel Crops” scenario assumes that most biofuels will be derived from new cropland; (iii) the “No Biofuels” scenario examines the sensitivity of the system to the use of biofuels; and (iv) the “Ocean Realignment” scenario investigates the effect of a large-scale change in ocean circulation on the biosphere and climate. Results of the biofuel scenarios illustrate the importance of examining the impact of biofuels on the full range of greenhouse gases, rather than only CO2. These scenarios also indicate possible side effects of the land requirements for energy crops. The Ocean Realignment scenario shows that an unexpected, low probability event can both enhance the build-up of greenhouse gases, and at the same time cause a temporary cooling of surface air temperatures in the Northern Hemisphere. However, warming of the atmosphere is only delayed, not avoided.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 76 (1994), S. 259-281 
    ISSN: 1573-2932
    Keywords: atmospheric chemistry ; CH4 ; OH ; O3 ; emissions scenarios ; integrated modeling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The future radiative forcing by non-CO2 greenhouse gases depends strongly on the behavior of the OH radical, which represents the primary sink for CH4, CO and H(C)FCs in the atmosphere. We present a simple model to describe the changes in the concentration of the main greenhouse gases. The focus is on the description of the atmospheric chemistry of OH and the important tropospheric oxidant and greenhouse gas O3. Changes in the equilibrium concentrations of these oxidants will change the trends in the concentrations of greenhouse gases, especially CH4. The model is applied to the 1992 IPCC emissions scenarios, as well as to an IMAGE 2.0 scenario, based on “Conventional Wisdom” assumptions. We find the following major results: for the central estimate of emissions assuming no additional policies (IS92a), the concentration of CH4 keeps rising at rates similar to those observed over the last decades; results for the other IS92 scenarios range from stabilization early in the next century (IS92d) to an ever increasing rate of accumulation of CH4 in the atmosphere (IS92f), even though these scenarios assume no policy interventions. The IMAGE 2.0 Conventional Wisdom scenario is similar to IS92a before the year 2025; afterwards the expansion of agricultural area significantly decreases the emissions of hydrocarbons and NOX from savanna burning, not represented in the IS92 scenarios. This leads to stable levels of atmospheric CH4 after 2025.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...