ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-04-21
    Description: The crystal structure of RNA polymerase II in the act of transcription was determined at 3.3 A resolution. Duplex DNA is seen entering the main cleft of the enzyme and unwinding before the active site. Nine base pairs of DNA-RNA hybrid extend from the active center at nearly right angles to the entering DNA, with the 3' end of the RNA in the nucleotide addition site. The 3' end is positioned above a pore, through which nucleotides may enter and through which RNA may be extruded during back-tracking. The 5'-most residue of the RNA is close to the point of entry to an exit groove. Changes in protein structure between the transcribing complex and free enzyme include closure of a clamp over the DNA and RNA and ordering of a series of "switches" at the base of the clamp to create a binding site complementary to the DNA-RNA hybrid. Protein-nucleic acid contacts help explain DNA and RNA strand separation, the specificity of RNA synthesis, "abortive cycling" during transcription initiation, and RNA and DNA translocation during transcription elongation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gnatt, A L -- Cramer, P -- Fu, J -- Bushnell, D A -- Kornberg, R D -- GM49985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1876-82. Epub 2001 Apr 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11313499" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Binding Sites ; Crystallography, X-Ray ; DNA, Fungal/*chemistry/metabolism ; Metals/metabolism ; Models, Genetic ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA Polymerase II/*chemistry/*metabolism ; RNA, Fungal/biosynthesis/*chemistry/metabolism ; RNA, Messenger/biosynthesis/*chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-05-30
    Description: Transcribing RNA polymerases oscillate between three stable states, two of which, pre- and posttranslocated, were previously subjected to x-ray crystal structure determination. We report here the crystal structure of RNA polymerase II in the third state, the reverse translocated, or "backtracked" state. The defining feature of the backtracked structure is a binding site for the first backtracked nucleotide. This binding site is occupied in case of nucleotide misincorporation in the RNA or damage to the DNA, and is termed the "P" site because it supports proofreading. The predominant mechanism of proofreading is the excision of a dinucleotide in the presence of the elongation factor SII (TFIIS). Structure determination of a cocrystal with TFIIS reveals a rearrangement whereby cleavage of the RNA may take place.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718261/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718261/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Dong -- Bushnell, David A -- Huang, Xuhui -- Westover, Kenneth D -- Levitt, Michael -- Kornberg, Roger D -- GM036559/GM/NIGMS NIH HHS/ -- GM041455/GM/NIGMS NIH HHS/ -- GM049985/GM/NIGMS NIH HHS/ -- K99 GM085136/GM/NIGMS NIH HHS/ -- K99 GM085136-01/GM/NIGMS NIH HHS/ -- R00 GM085136/GM/NIGMS NIH HHS/ -- R01 GM036659/GM/NIGMS NIH HHS/ -- R01 GM041455/GM/NIGMS NIH HHS/ -- R01 GM049985/GM/NIGMS NIH HHS/ -- R01 GM049985-16/GM/NIGMS NIH HHS/ -- R37 GM036659/GM/NIGMS NIH HHS/ -- R37 GM036659-22/GM/NIGMS NIH HHS/ -- R37 GM041455/GM/NIGMS NIH HHS/ -- R37 GM041455-20/GM/NIGMS NIH HHS/ -- U54 GM072970/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 May 29;324(5931):1203-6. doi: 10.1126/science.1168729.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19478184" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pair Mismatch ; Crystallography, X-Ray ; Guanosine Monophosphate/chemistry/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; Oligoribonucleotides/chemistry/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/chemistry/*metabolism ; RNA Polymerase II/*chemistry/*metabolism ; Saccharomyces cerevisiae/*enzymology ; *Transcription, Genetic ; Transcriptional Elongation Factors/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-07-30
    Description: The initiation of transcription by RNA polymerase II is a multistage process. X-ray crystal structures of transcription complexes containing short RNAs reveal three structural states: one with 2- and 3-nucleotide RNAs, in which only the 3'-end of the RNA is detectable; a second state with 4- and 5-nucleotide RNAs, with an RNA-DNA hybrid in a grossly distorted conformation; and a third state with RNAs of 6 nucleotides and longer, essentially the same as a stable elongating complex. The transition from the first to the second state correlates with a markedly reduced frequency of abortive initiation. The transition from the second to the third state correlates with partial "bubble collapse" and promoter escape. Polymerase structure is permissive for abortive initiation, thereby setting a lower limit on polymerase-promoter complex lifetime and allowing the dissociation of nonspecific complexes. Abortive initiation may be viewed as promoter proofreading, and the structural transitions as checkpoints for promoter control.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179255/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179255/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Xin -- Bushnell, David A -- Silva, Daniel-Adriano -- Huang, Xuhui -- Kornberg, Roger D -- AI21144/AI/NIAID NIH HHS/ -- GM049985/GM/NIGMS NIH HHS/ -- R01 AI021144/AI/NIAID NIH HHS/ -- R01 AI021144-27/AI/NIAID NIH HHS/ -- R01 GM036659/GM/NIGMS NIH HHS/ -- R01 GM049985/GM/NIGMS NIH HHS/ -- R01 GM049985-19/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 29;333(6042):633-7. doi: 10.1126/science.1206629.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21798951" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallization ; Crystallography, X-Ray ; Models, Molecular ; Molecular Dynamics Simulation ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; Oligoribonucleotides/chemistry/metabolism ; *Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Tertiary ; RNA Polymerase II/*chemistry/metabolism ; Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae Proteins/*chemistry/metabolism ; Templates, Genetic ; Transcription Factor TFIIB/chemistry/metabolism ; Transcription Initiation Site ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-28
    Description: The protein density and arrangement of subunits of a complete, 32-protein, RNA polymerase II (pol II) transcription pre-initiation complex (PIC) were determined by means of cryogenic electron microscopy and a combination of chemical cross-linking and mass spectrometry. The PIC showed a marked division in two parts, one containing all the general transcription factors (GTFs) and the other pol II. Promoter DNA was associated only with the GTFs, suspended above the pol II cleft and not in contact with pol II. This structural principle of the PIC underlies its conversion to a transcriptionally active state; the PIC is poised for the formation of a transcription bubble and descent of the DNA into the pol II cleft.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039082/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039082/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murakami, Kenji -- Elmlund, Hans -- Kalisman, Nir -- Bushnell, David A -- Adams, Christopher M -- Azubel, Maia -- Elmlund, Dominika -- Levi-Kalisman, Yael -- Liu, Xin -- Gibbons, Brian J -- Levitt, Michael -- Kornberg, Roger D -- AI21144/AI/NIAID NIH HHS/ -- GM063817/GM/NIGMS NIH HHS/ -- GM49885/GM/NIGMS NIH HHS/ -- R01 AI021144/AI/NIAID NIH HHS/ -- R01 GM036659/GM/NIGMS NIH HHS/ -- R01 GM063817/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 8;342(6159):1238724. doi: 10.1126/science.1238724. Epub 2013 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24072820" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; DNA, Fungal/chemistry/genetics ; *Gene Expression Regulation, Fungal ; Multiprotein Complexes/*chemistry ; Nucleic Acid Conformation ; Protein Conformation ; RNA Polymerase II/*chemistry ; Saccharomyces cerevisiae/*enzymology/genetics ; Saccharomyces cerevisiae Proteins/*chemistry ; Transcription Factors, General/*chemistry ; *Transcription Initiation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-02-14
    Description: The structure of an RNA polymerase II-transcribing complex has been determined in the posttranslocation state, with a vacancy at the growing end of the RNA-DNA hybrid helix. At the opposite end of the hybrid helix, the RNA separates from the template DNA. This separation of nucleic acid strands is brought about by interaction with a set of proteins loops in a strand/loop network. Formation of the network must occur in the transition from abortive initiation to promoter escape.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Westover, Kenneth D -- Bushnell, David A -- Kornberg, Roger D -- GM49985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 13;303(5660):1014-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963331" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Crystallization ; Crystallography, X-Ray ; DNA, Single-Stranded/*chemistry/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Oligodeoxyribonucleotides/chemistry/metabolism ; Oligoribonucleotides/chemistry/metabolism ; Promoter Regions, Genetic ; Protein Conformation ; RNA Polymerase II/*chemistry/*metabolism ; RNA, Complementary/*chemistry/metabolism ; Saccharomyces cerevisiae/enzymology ; Templates, Genetic ; Transcription Factor TFIIB/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...