ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-05
    Description: Mechanical properties of aluminized Teflon fluorinated ethylene propylene (FEP) thermal control materials on the Hubble Space Telescope (HST) exposed to low Earth orbit for up to 9.7 years have significantly degraded, with extensive cracking occurring on orbit. The NASA Glenn Research Center and the NASA Goddard Space Flight Center have collaborated on analyzing the physical and thermal properties of aluminized FEP (FEP-Al, DuPont) materials retrieved in December 1999 during HST's third servicing mission (SM3A). Comparisons have been made to properties of FEP-Al retrieved during the first and second HST servicing missions, SM1 and SM2, in order to determine degradation processes for FEP on HST.
    Keywords: Nonmetallic Materials
    Type: Research and Technology 2001; NASA/TM-2002-211333
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-05
    Description: Major goals of NASA and the Integrated High Performance Turbine Engine Technology (IHPTET) initiative include improvements in the affordability of propulsion systems, significant increases in the thrust/weight ratio, and increases in the temperature capability of components of gas turbine engines. Members of NASA Lewis Research Center's HITEMP project worked cooperatively with Allison Advanced Development Corporation to develop a manufacturing method to produce low-cost components for gas turbine engines. Affordability for these polymer composites is defined by the savings in acquisition and life-cycle costs associated with engine weight reduction. To lower engine component costs, the Lewis/Allison team focused on chopped graphite fiber/polyimide resin composites. The high-temperature polyimide resin chosen, PMR-II-50, was developed at NASA Lewis.
    Keywords: Nonmetallic Materials
    Type: Research and Technology 1997; NASA/TM-1998-206312
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-05
    Description: Significant component weight reductions are required to achieve the aggressive thrust-toweight goals for the Rocket Based Combined Cycle (RBCC) third-generation, reusable liquid propellant rocket engine, which is one possible engine for a future single-stage-toorbit vehicle. A collaboration between the NASA Glenn Research Center and Boeing Rocketdyne was formed under the Higher Operating Temperature Propulsion Components (HOTPC) program and, currently, the Ultra-Efficient Engine Technology (UEET) Project to develop carbon-fiber-reinforced high-temperature polymer matrix composites (HTPMCs). This program focused primarily on the combustor backup structure to replace all metallic support components with a much lighter polymer-matrixcomposite- (PMC-) titanium honeycomb sandwich structure.
    Keywords: Nonmetallic Materials
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: To increase performance and durability of high-temperature composites for potential rocket engine components, it is necessary to optimize wetting and interfacial bonding between high modulus carbon fibers and high-temperature polyimide resins. It has been previously demonstrated that the electro-oxidative shear treatments used by fiber manufacturers are not effective on higher modulus fibers that have fewer edge and defect sites in the surface crystallites. In addition, sizings commercially supplied on most carbon fibers are not compatible with polyimides. In this study, the surface chemistry and energy of high modulus carbon fibers (M40J and M60J, Torray) and typical fluorinated polyimide resins, such as PMR-11-50 were characterized. A continuous desizing system that uses an environmentally friendly chemical- mechanical process was developed for tow level fiber. Composites were fabricated with fibers containing the manufacturer's sizing, desized, and further treated with a reactive finish. Results of room temperature tests show that desizing reduces interface sensitive properties compared to the manufacturer's sizing and that subsequent surface re-treatment with reactive finish increases interface sensitive properties. Properties of thermally aged composites and composites with varying finish concentrations will also be discussed.
    Keywords: Nonmetallic Materials
    Type: High Temple Workshop 23; Feb 10, 2003 - Feb 13, 2003; Jacksonville, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: An investigation was conducted to examine the erosion behavior of uncoated and coated polymer matrix composite (PMC) specimens subjected to solid particle impingement using air jets. The PMCs were carbon-Kevlar (DuPont, Wilmington, DE) fiber-epoxy resin composites with a temperature capability up to 393 K (248 F). Tungsten carbide-cobalt (WC-Co) was the primary topcoat constituent. Bondcoats were applied to the PMC substrates to improve coating adhesion; then, erosion testing was performed at the University of Cincinnati. All erosion tests were conducted with Arizona road-dust (ARD), impinging at angles of 20 and 90 on both uncoated and two-layer coated PMCs at a velocity of 229 m/s and at a temperature of 366 K (200 F). ARD contains primarily 10-m aluminum oxide powders. Vertically scanning interference microscopy (noncontact, optical profilometry) was used to evaluate surface characteristics, such as erosion wear volume loss and depth, surface topography, and surface roughness. The results indicate that noncontact, optical interferometry can be used to make an accurate determination of the erosion wear volume loss of PMCs with multilayered structures while preserving the specimens. The two-layered (WC-Co topcoat and metal bondcoat) coatings on PMCs remarkably reduced the erosion volume loss by a factor of approximately 10. The tenfold increase in erosion resistance will contribute to longer PMC component lives, lower air friction, reduced related breakdowns, decreased maintenance costs, and increased PMC reliability. The decrease in the surface roughness of the coated vanes will lead to lower air friction and will subsequently reduce energy consumption. Eventually, the coatings could lead to overall economic savings.
    Keywords: Nonmetallic Materials
    Type: NASA/TM-2003-212628 , E-14047-1 , NAS 1.15:212628 , 28th Annual International Conference and Exposition on Advanced Ceramics and Composites; Jan 25, 2004 - Jan 30, 2004; Cocoa Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Thermally sprayed coatings are being studied and developed as methods of enabling lightweight composites to be used more extensively as structural components in propulsion applications in order to reduce costs and improve efficiency through weight reductions. The primary goal of this work is the development of functionally graded material [FGM] polymer/metal matrix composite coatings to provide improved erosion/oxidation resistance to polyimide-based polymer matrix composite [PMC] substrates. The goal is to grade the coating composition from pure polyimide, similar to the PMC substrate matrix on one side, to 100 % WC-Co on the other. Both step-wise and continuous gradation of the loading of the WC-Co reinforcing phase are being investigated. Details of the coating parameter development will be presented, specifically the high velocity oxy-fuel [HVOF] combustion spraying of pure PMR-11 matrix material and layers of various composition PMR-II/WC-Co blends onto steel and PMR-15 composite substrates. Results of the HVOF process optimization, microstructural characterization, and analysis will be presented. The sprayed coatings were evaluated using standard metallographic techniques - optical and scanning electron microscopy [SEM]. An SEM + electron dispersive spectroscopy [EDS] technique has also been used to confirm retention of the PMR-II component. Results of peel/butt adhesion testing to determine adhesion will also be presented.
    Keywords: Nonmetallic Materials
    Type: High Temple Workshop XXII; Jan 21, 2002 - Jan 24, 2002; Santa Fe, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Novel p-ethynyl-substituted rigid rod monomers were studied by pressure Differential Scanning Calorimetry (DSC), ThermoGravimetric Analysis (TGA), IsothermoGravimetric Analysis (IGA), and TGA-IR. These monomers, 4,4'-bis(((4-ethynylphenyl)carbonyl)oxy)biphenyl, designated 1, 1,5-bis-(((4-ethynylphenyl)carbonyl)oxy)naphthalene, designated 2, and bis(4-ethynylphenyl)pyromellitimide, designated 3, were polymerized in the solid state. Thermal polymerization in N2 or air produced highly cross-linked resins with polymerization exotherms centered between 212 and 276 C. The (delta)H's of polymerization of these resins in air were found to be double those in N2. When monomers 1 and 2 were heated in air from 23 to 750 C at 10 C/min, the main decomposition product was carbon dioxide, evolving at a maximum rate between 500 and 600 C; water was also detected as a decomposition product. Void-free neat resin moldings, designated lp to 3p, were made by compression molding the monomers and then heating them. The resulting polymers were highly cross-linked, and their glass transition temperatures (T(sub g)) were much higher than their polymerization temperatures. Using ThermoMechanical Analysis (TMA), we found that polymers lp to 3p had T(sub g)'s of 422, 329, and 380 C, respectively. The thermal and thermooxidative stabilities improved when lp to 3p were postcured in N2 (the postcured polymers were designated 1pp to 3pp). The Linear Thermal Expansions (LTE) for lp and 3p were 1% between 23 and 420 C. Using rheological analysis, we could not clearly detect the T(sub g)'s of lp to 3p because their moduli dropped only slightly between 23 and 490 C and the changes in tan beta were very low. Because of high cross-link density, their moduli changed little as the resins went from a glassy to a rubbery state. Their shear storage moduli in air ranged from 0.82 (3p, 3pp) to 1.6 GPa (lpp) at 23 C, from 0.16 (2p) to 0.7GPa(lpp) at 380 C, and from 0.18(lpp)to 0.6GPa(2p) at 490 C. Finally, these novel-p-ethynyl polymers exhibited an excellent combination of high T(sub g), low LTE, and high thermooxidative stability. Most notably, 3pp lost only 3% of its initial weight when it was aged for 500 h at 288 C in air.
    Keywords: Nonmetallic Materials
    Type: NASA-TM-112373 , NAS 1.15:112373 , Macromolecules; 28; 4; 860-865
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...