ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1992-05-01
    Print ISSN: 1047-4838
    Electronic ISSN: 1543-1851
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: NASA's 'HITEMP' program has been charged with development of propulsion systems technologies for next-generation civil and military aircraft, stressing high-temperature/low-density composites. These encompass polymer-matrix composites for fans, ducts, and compressor cases, and intermetallic and metallic alloy matrix composites for applications in turbine disks, blades, and vanes, and ceramic matrix composites for combustors and turbines. An overview is presented of program concerns and achievements to date.
    Keywords: CHEMISTRY AND MATERIALS (GENERAL)
    Type: In: International SAMPE Technical Conference, 24th and International SAMPE Metals and Metals Processing Conference, 3rd, Toronto, Canada, Oct. 20-22, 1992, Proceedings. Vol. 24 (A93-53376 23-23); p. T1029-T1043.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: The Advanced High-Temperature Engine Materials Technology Program is described in terms of its research initiatives and its goal of developing propulsion systems for civil aeronautics with low levels of noise, pollution, and fuel consumption. The program emphasizes the analysis and implementation of structural materials such as polymer-matrix composites in fans, casings, and engine-control systems. Also investigated in the program are intermetallic- and metal-matrix composites for uses in compressors and turbine disks as well as ceramic-matrix composites for extremely high-temperature applications such as turbine vanes.
    Keywords: CHEMISTRY AND MATERIALS (GENERAL)
    Type: JOM (ISSN 1047-4838); 44; 5, Ma
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: An evaluation is made of the state-of-the-art and foreseeable development prospects in high temperature engineering materials applicable to advanced heat engines and other aerothermodynamically affected structures. Attention is given to monocrystal- and microcrystal-producing metal solidification processes, soft oxide and chemically stable fluoride high temperature solid lubricants, polyimide and other high temperature polymers for propulsion system applications, high strength/toughness ceramics for heat engine structural components, thermal barrier coatings, and metal-matrix composites employing refractory matrices as well as reinforcing fibers.
    Keywords: METALLIC MATERIALS
    Type: Aerospace America (ISSN 0740-722X); 25; 12-14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-17
    Description: In analogy to 4-(para-substituted benzoyl)-N-methylpyridinium cations (1-X's), the title species (2-X's, -X = -OCH3, -CH3, -H, -Br, -COCH3, -NO2) undergo two reversible, well-separated (E(sub 1/2) greater than or equal to 650 mV) one-electron reductions. The effect of substitution on the reduction potentials of 2-X's is much weaker than the effect of the same substituents on 1-X's: the Hammett rho-values are 0.80 and 0.93 for the 1st- and 2nd-e reduction of 2-X's vs. 2.3 and 3.3 for the same reductions of 1-X's, respectively. Importantly, the nitro group of 2-NO2 undergoes reduction before the 2nd-e reduction of the 4-benzoylpyridinium system. These results suggest that the redox potentials of the 4-benzoylpyridinium system can be course-tuned via p-benzoyl substitution and fine-tuned via para-benzyl substitution. Introducing the recently derived substituent constant of the -NO2(sup)- group (sigma para-NO2(sup)- = -0.97) yields an excellent correlation for the 3rd-e reduction of 2- NO2 (corresponding to the reduction of the carbonyl group) with the 2nd-e reduction of the other 2-X's, and confirms the electron donating properties of -NO2(sup)-.
    Keywords: Inorganic, Organic and Physical Chemistry
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A rocket engine's combustion chamber is lined with material that is highly conductive to heat in order to dissipate the huge thermal load (evident in a white-hot exhaust plume). Because of its thermal conductivity copper is the best choice of liner material. However, the mechanical properties of pure copper are inadequate to withstand the high stresses, hence, copper alloys are needed in this application. But copper and its alloys are prone to oxidation and related damage, especially "blanching" (an oxidation-reduction mode of degradation). The space shuttle main engine combustion chamber is lined with a Cu-Ag-Zr alloy, "NARloy-Z", which exhibits blanching. A superior liner is being sought for the next generation of RLVs (Reusable Launch Vehicles) It should have improved mechanical properties and higher resistance to oxidation and blanching, but without substantial penalty in thermal conductivity. GRCop84, a Cu-8Cr-4Nb alloy (Cr2Nb in Cu matrix), developed by NASA Glenn Research Center (GRC) and Case Western Reserve University, is a prime contender for RLV liner material. In this study, the oxidation resistance of GRCop-84 and other related/candidate copper alloys are investigated and compared
    Keywords: Metals and Metallic Materials
    Type: TMS IV Meeting; Oct 06, 2002 - Oct 10, 2002; Columbus, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Carbon fiber reinforced high temperature polymer matrix composites (PMC) have been extensively investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines. The initial phase involves development of comprehensive composite material-process-structure-design-property in-service performance correlations and database, especially for a high stiffness facesheet of various sandwich structures. Overview of the program plan, technical approaches and current multi-team efforts will be presented. During composite fabrication, it was found that the two large volume commercial prepregging methods (hot-melt vs. solution) resulted in considerably different composite cure behavior. Details of the process-induced physical and chemical modifications in the prepregs, their effects on composite processing, and systematic cure cycle optimization studies will be discussed. The combined effects of prepregging method and cure cycle modification on composite properties and isothermal aging performance were also evaluated.
    Keywords: Composite Materials
    Type: High Temple Workshop XXII; Jan 21, 2002 - Jan 24, 2002; Santa Fe, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Ceramic Matrix Composites (CMCs) are attractive candidate materials in the aerospace industry due to their high specific strength, low density and higher temperature capabilities. The National Aeronautics and Space Administration (NASA) is pursuing the use of CMC components in advanced Reusable Launch Vehicle (RLV) propulsion applications. Carbon fiber-reinforced silicon carbide (C/SiQ is the primary material of interest for a variety of RLV propulsion applications. These composites offer high-strength carbon fibers and a high modulus, oxidation-resistant matrix. For comparison, two types of carbon fibers were processed with novel types of interface coatings (multilayer and pseudoporous). For RLV propulsion applications, environmental durability will be critical. The coatings show promise of protecting the carbon fibers from the oxidizing environment. The strengths and microstructures of these composite materials are presented.
    Keywords: Composite Materials
    Type: 26th Annual Conference on Materials and Structures; Jan 28, 2002 - Jan 31, 2002; Cape Canaveral, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: A computer controlled, pulsed chemical vapor infiltration (CVI) system has been developed to deposit BN from a liquid borazine (B3N3H6) source, as well as silicon doped BN coatings using borazine and a silicon source, into 2-D woven ceramic fabric preforms. The coating process was evaluated as a function of deposition temperature, pressure, and precursor flow rate. Coatings were characterized by field emission scanning electron microscopy, electron dispersive spectroscopy and Auger spectroscopy. By controlling the reactant feed ratios, Si incorporation could be controlled over the range of 6-24 atomic percent.
    Keywords: Nonmetallic Materials
    Type: 26th Annual International Conference on Advanced Ceramics and Composites; Jan 13, 2002 - Jan 18, 2002; Cocoa Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Fiber reinforced ceramic matrix composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, energy, process, and nuclear industries. The engineering designs require fabrication and manufacturing of complex shaped parts. In many instances, it is more economical to build up complex shapes by Joining simple geometrical shapes. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in ceramic matrix composites will be presented. Various joint design philosophies and design issues in joining of composites will be discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of ceramic composites, in different shapes and sizes, have been joined using this technology. Microstructure and mechanical properties of joints will be reported. Current status of various ceramic joining technologies and future prospects for their applications will also be discussed.
    Keywords: Composite Materials
    Type: International Symposium on SiC/SiC Composite Materials R and D and Its Application to Advanced Energy Systems; May 20, 2002 - May 22, 2002; Kyoto; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...