ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (23)
  • Nanotechnology
  • Psychology
Collection
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-06-29
    Description: Why do some social problems seem so intractable? In a series of experiments, we show that people often respond to decreases in the prevalence of a stimulus by expanding their concept of it. When blue dots became rare, participants began to see purple dots as blue; when threatening faces became rare, participants began to see neutral faces as threatening; and when unethical requests became rare, participants began to see innocuous requests as unethical. This "prevalence-induced concept change" occurred even when participants were forewarned about it and even when they were instructed and paid to resist it. Social problems may seem intractable in part because reductions in their prevalence lead people to see more of them.
    Keywords: Psychology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-11-07
    Description: Genome sequencing of large numbers of individuals promises to advance the understanding, treatment, and prevention of human diseases, among other applications. We describe a genome sequencing platform that achieves efficient imaging and low reagent consumption with combinatorial probe anchor ligation chemistry to independently assay each base from patterned nanoarrays of self-assembling DNA nanoballs. We sequenced three human genomes with this platform, generating an average of 45- to 87-fold coverage per genome and identifying 3.2 to 4.5 million sequence variants per genome. Validation of one genome data set demonstrates a sequence accuracy of about 1 false variant per 100 kilobases. The high accuracy, affordable cost of $4400 for sequencing consumables, and scalability of this platform enable complete human genome sequencing for the detection of rare variants in large-scale genetic studies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drmanac, Radoje -- Sparks, Andrew B -- Callow, Matthew J -- Halpern, Aaron L -- Burns, Norman L -- Kermani, Bahram G -- Carnevali, Paolo -- Nazarenko, Igor -- Nilsen, Geoffrey B -- Yeung, George -- Dahl, Fredrik -- Fernandez, Andres -- Staker, Bryan -- Pant, Krishna P -- Baccash, Jonathan -- Borcherding, Adam P -- Brownley, Anushka -- Cedeno, Ryan -- Chen, Linsu -- Chernikoff, Dan -- Cheung, Alex -- Chirita, Razvan -- Curson, Benjamin -- Ebert, Jessica C -- Hacker, Coleen R -- Hartlage, Robert -- Hauser, Brian -- Huang, Steve -- Jiang, Yuan -- Karpinchyk, Vitali -- Koenig, Mark -- Kong, Calvin -- Landers, Tom -- Le, Catherine -- Liu, Jia -- McBride, Celeste E -- Morenzoni, Matt -- Morey, Robert E -- Mutch, Karl -- Perazich, Helena -- Perry, Kimberly -- Peters, Brock A -- Peterson, Joe -- Pethiyagoda, Charit L -- Pothuraju, Kaliprasad -- Richter, Claudia -- Rosenbaum, Abraham M -- Roy, Shaunak -- Shafto, Jay -- Sharanhovich, Uladzislau -- Shannon, Karen W -- Sheppy, Conrad G -- Sun, Michel -- Thakuria, Joseph V -- Tran, Anne -- Vu, Dylan -- Zaranek, Alexander Wait -- Wu, Xiaodi -- Drmanac, Snezana -- Oliphant, Arnold R -- Banyai, William C -- Martin, Bruce -- Ballinger, Dennis G -- Church, George M -- Reid, Clifford A -- New York, N.Y. -- Science. 2010 Jan 1;327(5961):78-81. doi: 10.1126/science.1181498. Epub 2009 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Complete Genomics, Inc., 2071 Stierlin Court, Mountain View, CA 94043, USA. rdrmanac@completegenomics.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19892942" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Computational Biology ; Costs and Cost Analysis ; DNA/*chemistry/genetics ; Databases, Nucleic Acid ; *Genome, Human ; Genomic Library ; Genotype ; Haplotypes ; Human Genome Project ; Humans ; Male ; *Microarray Analysis ; Nanostructures ; Nanotechnology ; Nucleic Acid Amplification Techniques ; Polymorphism, Single Nucleotide ; Sequence Analysis, DNA/economics/instrumentation/*methods/standards ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-06-18
    Description: The application of single molecules as templates for nanodevices is a promising direction for nanotechnology. We used a pair of suspended DNA molecules as templates for superconducting two-nanowire devices. Because the resulting wires are very thin, comparable to the DNA molecules themselves, they are susceptible to thermal fluctuations typical for one-dimensional superconductors and exhibit a nonzero resistance over a broad temperature range. We observed resistance oscillations in these two-nanowire structures that are different from the usual Little-Parks oscillations. Here, we provide a quantitative explanation for the observed quantum interference phenomenon, which takes into account strong phase gradients created in the leads by the applied magnetic field.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hopkins, David S -- Pekker, David -- Goldbart, Paul M -- Bezryadin, Alexey -- New York, N.Y. -- Science. 2005 Jun 17;308(5729):1762-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15961664" target="_blank"〉PubMed〈/a〉
    Keywords: *Alloys ; *Dna ; Electric Conductivity ; Electric Impedance ; Germanium ; Magnetics ; Mathematics ; Metals ; Molybdenum ; *Nanostructures ; Nanotechnology ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/22440 | 18721 | 2018-04-09 18:06:53 | 22440 | Iranian Fisheries Science Research Institute
    Publication Date: 2021-07-05
    Description: Nanotechnology presents countless opportunities to develop new and improved consumer products for the benefit of the society . A most prominent nanoproduct is nanosilver. Nanosilver particles are generally smaller than 100 nm and contain 20–15,000 silver atoms. Despite the wide application of nanomaterials, there is a serious lack of information concerning their impact on human health. In the previous study we reported the cytotoxic of nanosilver on osteoblast G292 cancer cell line and the amount of IC50 determined as 3.42 µg/ml (Moaddab et al., Iran. Nano Lett., Vol. 1, No. 1, January 2011, pp. 11-16). The purpose of the present study is to assess the biological assay of nanosilver on two normal cell lines of fibroblast (HF2), and mesenchymal stem cells . The effect of nanosilver on these cells is evaluated by light microscopy, and by cell proliferation and standard cytotoxicity assays. The results demonstrate a concentration-dependent toxicity for the cells tested, and IC50 was determined as 6.33, and 6.68 µg/ml in mesenchymal stem cell, and fibroblast HF2, respectively. There is no significant difference between the 24 h and 48 h of cells exposure to nanosilver. The results show that Nano-Ag possesses low toxicity to normal cells and can display potential application in cancer chemoprevention and chemotherapy.
    Keywords: Biology ; Health ; Nanosilver ; toxicity test ; mesenchymal stem cell ; fibroblast (HF2) ; In vitro ; Nanotechnology ; Iran
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 487-496
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 44 (1988), S. 332-337 
    ISSN: 1420-9071
    Keywords: Psychology ; paranormal beliefs ; motivation ; mental imagery ; coincidence ; hidden causes ; subjective validation ; fraud ; education ; hoax-dehoax procedure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Investigation of paranormal claims has failed to find any repeatable paranormal phenomena, yet beliefs in such phenomena are extemely prevalent. Some of the psychological mechanisms which support these beliefs are described. Mental imagery, subjective validation, coincidence, hidden causes, and fraud all contributeto the folklore in this field. Magical thinking is as evident today as it ever has been. Recent research suggests that increased skepticism concerning paranormal claims can result from special educational procedures which emphasize critical thinking rather than learning scientific facts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-10-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malakoff, D -- New York, N.Y. -- Science. 2001 Oct 12;294(5541):292-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11598283" target="_blank"〉PubMed〈/a〉
    Keywords: Astronomy ; Biological Evolution ; Ecology ; History, 20th Century ; Humans ; *Nobel Prize ; Psychology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-06-08
    Description: By manipulating colloidal microspheres within customized channels, we have created micrometer-scale fluid pumps and particulate valves. We describe two positive-displacement designs, a gear and a peristaltic pump, both of which are about the size of a human red blood cell. Two colloidal valve designs are also demonstrated, one actuated and one passive, for the direction of cells or small particles. The use of colloids as both valves and pumps will allow device integration at a density far beyond what is currently achievable by other approaches and may provide a link between fluid manipulation at the macro- and nanoscale.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Terray, Alex -- Oakey, John -- Marr, David W M -- New York, N.Y. -- Science. 2002 Jun 7;296(5574):1841-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chemical Engineering Department, Colorado School of Mines, Golden, CO 80401, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12052952" target="_blank"〉PubMed〈/a〉
    Keywords: *Colloids ; *Equipment and Supplies ; *Microspheres ; Miniaturization ; Nanotechnology ; Optics and Photonics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-03-30
    Description: Weak, noncovalent interactions between molecules control many biological functions. In chemistry, noncovalent interactions are now exploited for the synthesis in solution of large supramolecular aggregates. The aim of these syntheses is not only the creation of a particular structure, but also the introduction of specific chemical functions in these supramolecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reinhoudt, D N -- Crego-Calama, M -- New York, N.Y. -- Science. 2002 Mar 29;295(5564):2403-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Supramolecular Chemistry and Technology, University of Twente, Post Office Box 217, 7500 AE Enschede, Netherlands. d.n.reinhoudt@ct.utwente.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11923525" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; *Chemistry/methods ; Chemistry, Physical ; Evolution, Chemical ; Molecular Conformation ; Molecular Structure ; Nanotechnology ; Oligonucleotides/chemistry ; Origin of Life ; Peptides/chemistry ; Physicochemical Phenomena ; Polymers/*chemical synthesis/*chemistry ; Stereoisomerism ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-05-19
    Description: Resistance to certain scientific ideas derives in large part from assumptions and biases that can be demonstrated experimentally in young children and that may persist into adulthood. In particular, both adults and children resist acquiring scientific information that clashes with common-sense intuitions about the physical and psychological domains. Additionally, when learning information from other people, both adults and children are sensitive to the trustworthiness of the source of that information. Resistance to science, then, is particularly exaggerated in societies where nonscientific ideologies have the advantages of being both grounded in common sense and transmitted by trustworthy sources.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bloom, Paul -- Weisberg, Deena Skolnick -- New York, N.Y. -- Science. 2007 May 18;316(5827):996-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology, Yale University, New Haven, CT 06520, USA. paul.bloom@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17510356" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Biological Evolution ; Brain/physiology ; Child ; *Culture ; Humans ; Intuition ; Learning ; Neurosciences ; Psychology ; *Science/education ; Trust ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-11-17
    Description: Artificial biochemical circuits are likely to play as large a role in biological engineering as electrical circuits have played in the engineering of electromechanical devices. Toward that end, nucleic acids provide a designable substrate for the regulation of biochemical reactions. However, it has been difficult to incorporate signal amplification components. We introduce a design strategy that allows a specified input oligonucleotide to catalyze the release of a specified output oligonucleotide, which in turn can serve as a catalyst for other reactions. This reaction, which is driven forward by the configurational entropy of the released molecule, provides an amplifying circuit element that is simple, fast, modular, composable, and robust. We have constructed and characterized several circuits that amplify nucleic acid signals, including a feedforward cascade with quadratic kinetics and a positive feedback circuit with exponential growth kinetics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, David Yu -- Turberfield, Andrew J -- Yurke, Bernard -- Winfree, Erik -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1121-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Computation and Neural Systems, California Institute of Technology, MC 136-93, 1200 East California Boulevard, Pasadena, CA91125, USA. dzhang@dna.caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006742" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalysis ; Chemical Engineering ; *Computers, Molecular ; DNA/*chemistry ; Entropy ; Equipment Design ; Feedback, Physiological ; Mice ; Nanotechnology ; Nucleic Acid Hybridization ; Rabbits
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...