ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-04-23
    Description: The worldwide prevalence of chronic hepatitis C virus (HCV) infection is estimated to be approaching 200 million people. Current therapy relies upon a combination of pegylated interferon-alpha and ribavirin, a poorly tolerated regimen typically associated with less than 50% sustained virological response rate in those infected with genotype 1 virus. The development of direct-acting antiviral agents to treat HCV has focused predominantly on inhibitors of the viral enzymes NS3 protease and the RNA-dependent RNA polymerase NS5B. Here we describe the profile of BMS-790052, a small molecule inhibitor of the HCV NS5A protein that exhibits picomolar half-maximum effective concentrations (EC(50)) towards replicons expressing a broad range of HCV genotypes and the JFH-1 genotype 2a infectious virus in cell culture. In a phase I clinical trial in patients chronically infected with HCV, administration of a single 100-mg dose of BMS-790052 was associated with a 3.3 log(10) reduction in mean viral load measured 24 h post-dose that was sustained for an additional 120 h in two patients infected with genotype 1b virus. Genotypic analysis of samples taken at baseline, 24 and 144 h post-dose revealed that the major HCV variants observed had substitutions at amino-acid positions identified using the in vitro replicon system. These results provide the first clinical validation of an inhibitor of HCV NS5A, a protein with no known enzymatic function, as an approach to the suppression of virus replication that offers potential as part of a therapeutic regimen based on combinations of HCV inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Min -- Nettles, Richard E -- Belema, Makonen -- Snyder, Lawrence B -- Nguyen, Van N -- Fridell, Robert A -- Serrano-Wu, Michael H -- Langley, David R -- Sun, Jin-Hua -- O'Boyle, Donald R 2nd -- Lemm, Julie A -- Wang, Chunfu -- Knipe, Jay O -- Chien, Caly -- Colonno, Richard J -- Grasela, Dennis M -- Meanwell, Nicholas A -- Hamann, Lawrence G -- England -- Nature. 2010 May 6;465(7294):96-100. doi: 10.1038/nature08960. Epub 2010 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20410884" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Animals ; Antiviral Agents/blood/chemistry/*pharmacology/therapeutic use ; Cell Line ; Cercopithecus aethiops ; Drug Resistance, Viral ; Female ; Genotype ; HeLa Cells ; Hepacivirus/*drug effects ; Hepatitis C/drug therapy/virology ; Humans ; Imidazoles/blood/chemistry/*pharmacology ; Inhibitory Concentration 50 ; Male ; Middle Aged ; Time Factors ; Vero Cells ; Viral Load/drug effects ; Viral Nonstructural Proteins/*antagonists & inhibitors ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-01-11
    Description: Atrial fibrillation (AF) is a common cardiac arrhythmia whose molecular etiology is poorly understood. We studied a family with hereditary persistent AF and identified the causative mutation (S140G) in the KCNQ1 (KvLQT1) gene on chromosome 11p15.5. The KCNQ1 gene encodes the pore-forming alpha subunit of the cardiac I(Ks) channel (KCNQ1/KCNE1), the KCNQ1/KCNE2 and the KCNQ1/KCNE3 potassium channels. Functional analysis of the S140G mutant revealed a gain-of-function effect on the KCNQ1/KCNE1 and the KCNQ1/KCNE2 currents, which contrasts with the dominant negative or loss-of-function effects of the KCNQ1 mutations previously identified in patients with long QT syndrome. Thus, the S140G mutation is likely to initiate and maintain AF by reducing action potential duration and effective refractory period in atrial myocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Yi-Han -- Xu, Shi-Jie -- Bendahhou, Said -- Wang, Xiao-Liang -- Wang, Ying -- Xu, Wen-Yuan -- Jin, Hong-Wei -- Sun, Hao -- Su, Xiao-Yan -- Zhuang, Qi-Nan -- Yang, Yi-Qing -- Li, Yue-Bin -- Liu, Yi -- Xu, Hong-Ju -- Li, Xiao-Fei -- Ma, Ning -- Mou, Chun-Ping -- Chen, Zhu -- Barhanin, Jacques -- Huang, Wei -- New York, N.Y. -- Science. 2003 Jan 10;299(5604):251-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiology, Tongji Hospital, and Institute of Medical Genetics, Tongji University, 399 Xin Cun Road, Shanghai 200065, People's Republic of China. drchen@public7.sta.net.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12522251" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Adolescent ; Adult ; Aged ; Animals ; Atrial Fibrillation/*genetics/physiopathology ; COS Cells ; Child ; China ; Chromosomes, Human, Pair 11/genetics ; Electrocardiography ; Female ; Haplotypes ; Heart Atria/physiopathology ; Heart Ventricles/physiopathology ; Humans ; KCNQ Potassium Channels ; KCNQ1 Potassium Channel ; Lod Score ; Long QT Syndrome/genetics/physiopathology ; Male ; Microsatellite Repeats ; Middle Aged ; Mutation ; *Mutation, Missense ; Myocytes, Cardiac/*physiology ; Patch-Clamp Techniques ; Pedigree ; Potassium Channels/*genetics/physiology ; *Potassium Channels, Voltage-Gated
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-10-21
    Description: Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss in the developed world and has a strong genetic predisposition. A locus at human chromosome 10q26 affects the risk of AMD, but the precise gene(s) have not been identified. We genotyped 581 AMD cases and 309 normal controls in a Caucasian cohort in Utah. We demonstrate that a single-nucleotide polymorphism, rs11200638, in the promoter region of HTRA1 is the most likely causal variant for AMD at 10q26 and is estimated to confer a population attributable risk of 49.3%. The HTRA1 gene encodes a secreted serine protease. Preliminary analysis of lymphocytes and retinal pigment epithelium from four AMD patients revealed that the risk allele was associated with elevated expression levels of HTRA1 mRNA and protein. We also found that drusen in the eyes of AMD patients were strongly immunolabeled with HTRA1 antibody. Together, these findings support a key role for HTRA1 in AMD susceptibility and identify a potential new pathway for AMD pathogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Zhenglin -- Camp, Nicola J -- Sun, Hui -- Tong, Zongzhong -- Gibbs, Daniel -- Cameron, D Joshua -- Chen, Haoyu -- Zhao, Yu -- Pearson, Erik -- Li, Xi -- Chien, Jeremy -- Dewan, Andrew -- Harmon, Jennifer -- Bernstein, Paul S -- Shridhar, Viji -- Zabriskie, Norman A -- Hoh, Josephine -- Howes, Kimberly -- Zhang, Kang -- CA98364/CA/NCI NIH HHS/ -- GCRC M01-RR00064/RR/NCRR NIH HHS/ -- P30EY014800/EY/NEI NIH HHS/ -- R01EY14428/EY/NEI NIH HHS/ -- R01EY14448/EY/NEI NIH HHS/ -- R01EY15771/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 10;314(5801):992-3. Epub 2006 Oct 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17053109" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aging ; Alleles ; Case-Control Studies ; Chromosomes, Human, Pair 10/genetics ; Cohort Studies ; European Continental Ancestry Group/genetics ; Female ; *Genetic Predisposition to Disease ; Genotype ; Homozygote ; Humans ; Lymphocytes/enzymology ; Macular Degeneration/*genetics ; Male ; Middle Aged ; Pigment Epithelium of Eye/enzymology ; *Polymorphism, Single Nucleotide ; *Promoter Regions, Genetic ; RNA, Messenger/genetics/metabolism ; Retinal Drusen/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Serine Endopeptidases/analysis/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...