ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • phenolic acids  (2)
  • Microbial biomass  (1)
  • 1
    ISSN: 1432-0789
    Keywords: Microbial biomass ; No-till agrosystem ; Maize ; Fumigation ; Extraction method
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The soil microbial biomass contains important labile pools of C, N, P, and S, and fluctuations in its size and activity can significantly influence crop productivity. In cropping systems where fertilizer use is reduced or eliminated and green-manure legumes are used, nutrient availability is more directly linked to C-cycle dynamics. We observed the fluctuations in microbial biomass C and P, and in microbial biomass activity over three cropping seasons in continuous maize and 2-year maize-wheat-soybean rotation agroecosystems under no-till and reduced-chemical-input management. We estimated the concentrations of microbial C and P using fumigation-incubation and fumigation-extraction techniques for the surface 20 cm of Cecil and Appling series soils (clayey, kaolinitic, thermic, Typic Kanhapludults). There were significant seasonal fluctuations in microbial C and P under all cropping systems. Generally, the magnitude of fluxes and the quantity of microbial C and P tended to be higher in reduced-chemical-input systems due to tillage and incorporation of crop, weed, and legume residues. Over 3 years, the means for microbial C were 435 under reduced-input maize; 289 under no-till maize; 374 und the reduced-input crop rotation; and 288 mg kg-1 soil under the no-till rotation. The means for microbial P were 5.2 under reduced-input maize; 3.5 under no-till maize; 5.0 under the reduced-input rotation; and 3.5 mg kg-1 soil under the no-till rotation. Estimates of microbial activity, derived from CO2−C evolution and specific respiratory activity (mg CO2−C per mg biomass C), suggest that reduced-chemical-input management may cause a larger fraction of the biomass to be relatively “inactive” but may also increase the activity of the remaining fraction over that in no-till. Thus in these specific systems, the turnover of C and P through the microbial biomass with a reduced chemical input to the soil may be higher than under a no-till system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-1561
    Keywords: Cover crops ; wheat ; Triticum aestivum ; soybean ; Glycine max ; soil extracts ; germination bioassays ; phenolic acids ; hydroxamic acids ; allelopathy ; slope analysis ; ivy-leaved morning glory ; Ipomoea hederacea ; crimson clover ; Trifolium incarnalum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The primary objective of this research was to determine if soil extracts could be used directly in bioassays for the detection of allelopathic activity. Here we describe: (1) a way to estimate levels of allelopathic compounds in soil; (2) how pH, solute potential, and/or ion content of extracts may modify the action of allelopathic compounds on germination and radicle and hypocotyl length of crimson clover (Trifolium incarnatum L.) and ivyleaved morning glory (Ipomoea hederacea L. Jacquin.); and (3) how biological activity of soil extracts may be determined. A water-autoclave extraction procedure was chosen over the immediate-water and 5-hr EDTA extraction procedures, because the autoclave procedure was effective in extracting solution and reversibly bound ferulic acid as well as phenolic acids from wheat debris. The resulting soil extracts were used directly in germination bioassays. A mixture of phenolic acids similar to that obtained from wheat-no-till soils did not affect germination of clover or morning glory and radicle and hypocotyl length of morning glory. The mixture did, however, reduce radicle and hypocotyl length of clover. Individual phenolic acids also did not inhibit germination, but did reduce radicle and hypocotyl length of both species. 6-MBOA (6-methoxy-2,3-benzoxazolinone), a conversion product of 2-o-glucosyl-7-methoxy-1,4-benzoxazin-3-one, a hydroxamic acid in living wheat plants, inhibited germination and radicle and hypocotyl length of clover and morning glory. 6-MBOA, however, was not detected in wheat debris, stubble, or soil extracts. Total phenolic acids (FC) in extracts were determined with Folin and Ciocalteu's phenol reagent. Levels of FC in wheat-conventionaltill soil extracts were not related to germination or radicle and hypocotyl length of either species. Levels of FC in wheat-no-till soil extracts were also not related to germination of clover or morning glory, but were inversely related to radicle and hypocotyl length of clover and morning glory. FC values, solute potential, and acidity of wheat-no-till soil extracts appeared to be independent (additive) in action on clover radicle and hypocotyl length. Radicle and hypocotyl length of clover was inversely related to increasing FC and solute potential and directly related to decreasing acidity. Biological activity of extracts was determined best from slopes of radicle and hypocotyl length obtained from bioassays of extract dilutions. Thus, data derived from the water-autoclave extraction procedure, FC analysis, and slope analysis for extract activity in conjunction with data on extract pH and solute potential can be used to estimate allelopathic activity of wheat-no-till soils
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-1561
    Keywords: Wheat ; Triticum aestivum ; soybean ; Glycine max ; no till ; conventional till ; soil extracts ; allelopathy ; phenolic acids ; Folin & Ciocalteu's phenol reagent ; HPLC
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Soil core (0–2.5 and/or 0–10 cm) samples were taken from wheat no till, wheat-conventional till, and fallow-conventional till soybean cropping systems from July to October of 1989 and extracted with water in an autoclave. The soil extracts were analyzed for seven common phenolic acids (p-coumaric, vanillic,p-hydroxybenzoic, syringic, caffeic, ferulic, and sinapic; in order of importance) by high-performance liquid chromatography. The highest concentration observed was 4 μg/g soil forp-coumaric acid. Folin & Ciocalteu's phenol reagent was used to determine total phenolic acid content. Total phenolic acid content of 0- to 2.5-cm core samples was approximately 34% higher than that of the 0- to 10-cm core samples. Phenolic acid content of 0- to 2.5-cm core samples from wheat-no till systems was significantly higher than those from all other cropping systems. Individual phenolic acids and total phenolic acid content of soils were highly correlated. The last two observations were confirmed by principal component analysis. The concentrations were confirmed by principal component analysis, tions of individual phenolic acids extracted from soil samples were related to soil pH, water content of soil samples, total soil carbon, and total soil nitrogen. Indirect evidence suggested that phenolic acids recovered by the water-autoclave procedure used came primarily from bound forms in the soil samples.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...