ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-02-16
    Description: The majority of mitochondrial DNA (mtDNA) mutations that cause human disease are mild to moderately deleterious, yet many random mtDNA mutations would be expected to be severe. To determine the fate of the more severe mtDNA mutations, we introduced mtDNAs containing two mutations that affect oxidative phosphorylation into the female mouse germ line. The severe ND6 mutation was selectively eliminated during oogenesis within four generations, whereas the milder COI mutation was retained throughout multiple generations even though the offspring consistently developed mitochondrial myopathy and cardiomyopathy. Thus, severe mtDNA mutations appear to be selectively eliminated from the female germ line, thereby minimizing their impact on population fitness.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049809/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049809/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fan, Weiwei -- Waymire, Katrina G -- Narula, Navneet -- Li, Peng -- Rocher, Christophe -- Coskun, Pinar E -- Vannan, Mani A -- Narula, Jagat -- Macgregor, Grant R -- Wallace, Douglas C -- AG13154/AG/NIA NIH HHS/ -- AG16573/AG/NIA NIH HHS/ -- AG24373/AG/NIA NIH HHS/ -- DK73691/DK/NIDDK NIH HHS/ -- HD45913/HD/NICHD NIH HHS/ -- NS21328/NS/NINDS NIH HHS/ -- U01 HD045913-01/HD/NICHD NIH HHS/ -- U01 HD045913-02/HD/NICHD NIH HHS/ -- U01 HD045913-03/HD/NICHD NIH HHS/ -- U01 HD045913-04/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):958-62. doi: 10.1126/science.1147786.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, CA 92697, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276892" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cardiomyopathies/genetics/pathology ; Cell Line ; Crosses, Genetic ; DNA, Mitochondrial/*genetics ; Electron Transport Complex I/metabolism ; Electron Transport Complex IV/*genetics/metabolism ; Embryonic Stem Cells ; Female ; Frameshift Mutation ; *Germ-Line Mutation ; Litter Size ; Male ; Mice ; Mitochondria/physiology ; Mitochondrial Myopathies/*genetics/pathology ; Mutation, Missense ; Myocardium/pathology ; NADH Dehydrogenase/*genetics ; Oocytes/*physiology ; Oogenesis ; Oxidative Phosphorylation ; Oxygen Consumption ; Point Mutation ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-07-27
    Description: D-fenfluramine (d-FEN) was once widely prescribed and was among the most effective weight loss drugs, but was withdrawn from clinical use because of reports of cardiac complications in a subset of patients. Discerning the neurobiology underlying the anorexic action of d-FEN may facilitate the development of new drugs to prevent and treat obesity. Through a combination of functional neuroanatomy, feeding, and electrophysiology studies in rodents, we show that d-FEN-induced anorexia requires activation of central nervous system melanocortin pathways. These results provide a mechanistic explanation of d-FEN's anorexic actions and indicate that drugs targeting these downstream melanocortin pathways may prove to be effective and more selective anti-obesity treatments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heisler, Lora K -- Cowley, Michael A -- Tecott, Laurence H -- Fan, Wei -- Low, Malcolm J -- Smart, James L -- Rubinstein, Marcelo -- Tatro, Jeffrey B -- Marcus, Jacob N -- Holstege, Henne -- Lee, Charlotte E -- Cone, Roger D -- Elmquist, Joel K -- F31HG00201/HG/NHGRI NIH HHS/ -- P01DK056116/DK/NIDDK NIH HHS/ -- P01DK55819/DK/NIDDK NIH HHS/ -- R01MH061583/MH/NIMH NIH HHS/ -- R01MH44694/MH/NIMH NIH HHS/ -- R01MH61624/MH/NIMH NIH HHS/ -- R03TW01233/TW/FIC NIH HHS/ -- New York, N.Y. -- Science. 2002 Jul 26;297(5581):609-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12142539" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Appetite Depressants/*pharmacology ; Arcuate Nucleus of Hypothalamus/*drug effects/metabolism ; Feeding Behavior/*drug effects ; Fenfluramine/*pharmacology ; Male ; Melanocyte-Stimulating Hormones/pharmacology ; Mice ; Mice, Obese ; Mice, Transgenic ; Neurons/drug effects/metabolism ; Paraventricular Hypothalamic Nucleus/drug effects/metabolism ; Patch-Clamp Techniques ; Pro-Opiomelanocortin/metabolism ; Rats ; Rats, Sprague-Dawley ; Receptor, Melanocortin, Type 3 ; Receptor, Melanocortin, Type 4 ; Receptor, Serotonin, 5-HT2C ; Receptors, Corticotropin/metabolism ; Receptors, Serotonin/metabolism ; Serotonin/metabolism ; Serotonin Agents/pharmacology ; alpha-MSH/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-07-22
    Description: Fibroblast growth factor 1 (FGF1) is an autocrine/paracrine regulator whose binding to heparan sulphate proteoglycans effectively precludes its circulation. Although FGF1 is known as a mitogenic factor, FGF1 knockout mice develop insulin resistance when stressed by a high-fat diet, suggesting a potential role in nutrient homeostasis. Here we show that parenteral delivery of a single dose of recombinant FGF1 (rFGF1) results in potent, insulin-dependent lowering of glucose levels in diabetic mice that is dose-dependent but does not lead to hypoglycaemia. Chronic pharmacological treatment with rFGF1 increases insulin-dependent glucose uptake in skeletal muscle and suppresses the hepatic production of glucose to achieve whole-body insulin sensitization. The sustained glucose lowering and insulin sensitization attributed to rFGF1 are not accompanied by the side effects of weight gain, liver steatosis and bone loss associated with current insulin-sensitizing therapies. We also show that the glucose-lowering activity of FGF1 can be dissociated from its mitogenic activity and is mediated predominantly via FGF receptor 1 signalling. Thus we have uncovered an unexpected, neomorphic insulin-sensitizing action for exogenous non-mitogenic human FGF1 with therapeutic potential for the treatment of insulin resistance and type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184286/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184286/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suh, Jae Myoung -- Jonker, Johan W -- Ahmadian, Maryam -- Goetz, Regina -- Lackey, Denise -- Osborn, Olivia -- Huang, Zhifeng -- Liu, Weilin -- Yoshihara, Eiji -- van Dijk, Theo H -- Havinga, Rick -- Fan, Weiwei -- Yin, Yun-Qiang -- Yu, Ruth T -- Liddle, Christopher -- Atkins, Annette R -- Olefsky, Jerrold M -- Mohammadi, Moosa -- Downes, Michael -- Evans, Ronald M -- DE13686/DE/NIDCR NIH HHS/ -- DK-033651/DK/NIDDK NIH HHS/ -- DK-063491/DK/NIDDK NIH HHS/ -- DK-074868/DK/NIDDK NIH HHS/ -- DK057978/DK/NIDDK NIH HHS/ -- DK090962/DK/NIDDK NIH HHS/ -- ES010337/ES/NIEHS NIH HHS/ -- HL088093/HL/NHLBI NIH HHS/ -- HL105278/HL/NHLBI NIH HHS/ -- P01 DK054441/DK/NIDDK NIH HHS/ -- P01 DK074868/DK/NIDDK NIH HHS/ -- P01 HL088093/HL/NHLBI NIH HHS/ -- P01-DK054441-14A1/DK/NIDDK NIH HHS/ -- P30 DK063491/DK/NIDDK NIH HHS/ -- P42 ES010337/ES/NIEHS NIH HHS/ -- R01 HL105278/HL/NHLBI NIH HHS/ -- R24 DK090962/DK/NIDDK NIH HHS/ -- R37 DK033651/DK/NIDDK NIH HHS/ -- R37 DK057978/DK/NIDDK NIH HHS/ -- T32 DK007494/DK/NIDDK NIH HHS/ -- T32-DK-007494/DK/NIDDK NIH HHS/ -- U54 HD012303/HD/NICHD NIH HHS/ -- U54-HD-012303-25/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Sep 18;513(7518):436-9. doi: 10.1038/nature13540. Epub 2014 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA [2]. ; 1] Center for Liver, Digestive and Metabolic Diseases, Departments of Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands [2]. ; Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA. ; Department of Medicine, Division of Endocrinology and Metabolism, University of California at San Diego, La Jolla, California 92093, USA. ; 1] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA [2] School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China. ; Center for Liver, Digestive and Metabolic Diseases, Departments of Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands. ; The Storr Liver Unit, Westmead Millennium Institute and University of Sydney, Westmead Hospital, Westmead, New South Wales 2145, Australia. ; 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043058" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/metabolism ; Body Weight/drug effects ; Diabetes Mellitus, Experimental/drug therapy/metabolism ; Diabetes Mellitus, Type 2/metabolism ; Diet, High-Fat ; Dose-Response Relationship, Drug ; Fibroblast Growth Factor 1/administration & dosage/adverse effects/*pharmacology ; Glucose/*metabolism ; Glucose Tolerance Test ; Humans ; Insulin/*metabolism ; Insulin Resistance ; Liver/drug effects/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Mitogens/pharmacology ; Muscle, Skeletal/drug effects/metabolism ; Receptor, Fibroblast Growth Factor, Type 1/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...