ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: The objective of this study is to compare incineration and composting in a Mars-based advanced life support (ALS) system. The variables explored include waste pre-processing requirements, reactor sizing and buffer capacities. The study incorporates detailed mathematical models of biomass production and waste processing into an existing dynamic ALS system model. The ALS system and incineration models (written in MATLAB/SIMULINK(c)) were developed at the NASA Ames Research Center. The composting process is modeled using first order kinetics, with different degradation rates for individual waste components (carbohydrates, proteins, fats, cellulose and lignin). The biomass waste streams are generated using modified "Eneray Cascade" crop models, which use light- and dark-cycle temperatures, irradiance, photoperiod, [CO2], planting density, and relative humidity as model inputs. The study also includes an evaluation of equivalent system mass (ESM).
    Keywords: Man/System Technology and Life Support
    Type: Life Support and Biosphere Science; Aug 06, 2000 - Aug 09, 2000; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Removal of carbon dioxide (CO2) is a necessary step in air revitalization and is often accomplished with sorbent materials. Since moisture competes with CO2 in sorbent materials, it is necessary to remove the water first. This is typically accomplished in two stages: bulk removal and residual drying. Silica gel is used as the bulk drying material in the Carbon Dioxide Removal Assembly (CDRA) in operation on ISS. There has been some speculation that silica gel may also be capable of serving as the residual drying material. This paper will describe test apparatus and procedures for determining the performance of silica gel in residual air drying.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN12101 , International Conference on Environmental Systems; Jul 13, 2014 - Jul 17, 2014; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: BIO-Plex is a ground-based test bed currently under development by NASA for testing technologies and practices that may be utilized in future long-term life support missions. All aspects of such an Advanced Life Support (ALS) System must be considered to confidently construct a reliable system, which will not only allow the crew to survive in harsh environments, but allow the crew time to perform meaningful research. Effective handling of solid wastes is a critical aspect of the system, especially when recovery of resources contained in the waste is required. This is particularly important for ALS Systems configurations that include a Biomass Production Chamber. In these cases, significant amounts of inedible biomass waste may be produced, which can ultimately serve as a repository of necessary resources for sustaining life, notably carbon, water, and plant nutrients. Numerous biological and physicochemical solid waste processing options have been considered. Biological options include composting, aerobic digestion, and anaerobic digestion. Physicochemical options include pyrolysis, SCWO (supercritical water oxidation), various incineration configurations, microwave incineration, magnetically assisted gasification, and low temperature plasma reaction. Modeling of these options is a necessary step to assist in the design process. A previously developed top-level model of BIO-Plex implemented in MATLAB Simulink (r) for the use of systems analysis and design has been adopted for this analysis. Presently, this model only considered incineration for solid waste processing. Present work, reported here, includes the expansion of this model to include a wider array of solid waste processing options selected from the above options, bearing in mind potential, near term solid waste treatment systems. Furthermore, a trade study has also been performed among these solid waste processing technologies in an effort to determine the ideal technology for long-term life support missions.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 09, 2001 - Jul 12, 2001; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The success of long-duration missions will depend on resource recovery and the self-sustainability of life support technologies. Current technologies used on the International Space Station (ISS) utilize chemical and mechanical processes, such as filtration, to recover potable water from urine produced by crewmembers. Such technologies have significantly reduced the need for water resupply through closed-loop resource recovery and recycling. Harvesting the important components of urine requires selectivity, whether through the use of membranes or other physical barriers, or by chemical or biological processes. Given the chemical composition of urine, the downstream benefits of urine processing for resource recovery will be critical for many aspects of life support, such as food production and the synthesis of biofuels. This paper discusses the beneficial components of urine and their potential applications, and the challenges associated with using urine for nutrient recycling for space application.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN16362 , International Conference on Environmental Systems (ICES) 2014; Jul 13, 2014 - Jul 17, 2014; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Removal of metabolic CO2 from breathing air is a vital process for life support in all crewed space missions. A CO2 removal processor called the Low Power CO2 Removal (LPCOR) system is being developed in the Bioengineering Branch at NASA Ames Research Center. LPCOR utilizes advanced adsorption and membrane gas separation processes to achieve substantial power and mass reduction when compared to the state-of-the-art carbon dioxide removal assembly (CORA) of the US segment of the International Space Station (ISS). LPCOR is an attractive alternative for use in commercial spacecraft for short-duration missions and can easily be adapted for closed-loop life support applications. NASA envisions a next-generation closed-loop atmosphere revitalization system that integrates advanced CO2 removal, O2 recovery, and trace contaminant control processes to improve overall system efficiency. LPCOR will serve as the front end to such a system. LPCOR is a reliable air revitalization technology that can serve both the near-term and long-term human space flight needs of NASA and its commercial partners.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN2426 , CRASTE Commercial and Govt Responsive Access to Space; Oct 25, 2010 - Oct 28, 2010; Mountain View, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-25
    Description: The Carbon Dioxide Removal and Compression System (CRCS) is designed to perform both the Carbon Dioxide(CO2) removal and compress CO2 for further processing. The CRCS was designed as a lower power requirement option to the one currently being used on the International Space Station (ISS). This paper describes the final design, fabrication, assembly, and testing of the integrated CRCS. Initial results indicated that the spiral heaters used did not yield uniform heating within both the adsorption and compression beds. In addition, the heaters for the compression bed were insufficient and an additional HVAC jacket was employed to provide heat to the bed.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2016-027 , ARC-E-DAA-TN31675 , International Conference on Environmental Systems; Jul 10, 2016 - Jul 17, 2016; Viena; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Removal of carbon dioxide (CO2) is a necessary step in air revitalization and is often accomplished with sorbent materials. Since moisture competes with CO2 in zeolite sorbent materials, it is necessary to remove the water first. This is typically accomplished in two stages: bulk removal and residual drying. Silica gel is used as the bulk drying material in the Carbon Dioxide Removal Assembly (CDRA) in operation on the ISS (International Space Station). There has been some speculation that silica gel may also be capable of serving as both bulk and residual drying material to reduce system mass and Foreign Object Debris (FOD). Previous research tested silica gel alone as drying material. However, the silica gel volume used was not comparable to the current amount used on the CDRA. Therefore, the tests were repeated with the new silica gel volume. This paper discusses the fabrication and assembly of the modified canister to accommodate the new volume, the testing, and the evaluation of the test results.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2016-027 , ARC-E-DAA-TN31677 , International Conference on Environmental Systems (ICES); Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Long-duration space missions will benefit from closed-loop life support technologies that minimize mass, volume, and power as well as decrease reliance on Earth-based resupply. A system for In situ production of essential vitamins and nutrients can address the documented problem of degradation of stored food and supplements. Research has shown that the edible yeast Saccharomyces cerevisiae can be used as an on-demand system for the production of various compounds that are beneficial to human health. A critical objective in the development of this approach for long-duration space missions is the effective storage of the selected microorganisms. This research investigates the effects of different storage methods on survival rates of the non-sporulating probiotic S. boulardii, and S. cerevisiae spores and vegetative cells. Dehydration has been shown to increase long-term yeast viability, which also allows increased shelf-life and reduction in mass and volume. The process of dehydration causes detrimental effects on vegetative cells, including oxidative damage and membrane disruption. To maximize cell viability, various dehydration methods are tested here, including lyophilization (freeze-drying), air drying, and dehydration by vacuum. As a potential solution to damage caused by lyophilization, the efficacy of various cryoprotectants was tested. Furthermore, in an attempt to maintain higher survival rates, the effect of temperature during long-term storage was investigated. Data show spores of the wild-type strain to be more resilient to dehydration-related stressors than vegetative cells of either strain, and maintain high viability rates even after one year at room temperature. In the event that engineering the organism to produce targeted nutrient compounds interferes with effective sporulation of S. cerevisiae, a more robust method for improving vegetative cell storage is being sought. Therefore, anhydrobiotic engineering of S. cerevisiae and S. boulardii is being conducted.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN39871 , International Conference on Environmental Systems, Inc.; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-13
    Description: Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-28
    Description: A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TM-2006-213485 , A-06004
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...