ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1993-03-05
    Description: The binding and hydrolysis of guanosine triphosphate (GTP) by the small GTP-binding protein Sar1p is required to form transport vesicles from the endoplasmic reticulum (ER) in Saccharomyces cerevisiae. Experiments revealed that an interaction between Sar1p and the Sec23p subunit of an oligomeric protein is also required for vesicle budding. The isolated Sec23p subunit and the oligomeric complex stimulated guanosine triphosphatase (GTPase) activity of Sar1p 10- to 15-fold but did not activate two other small GTP-binding proteins involved in vesicle traffic (Ypt1p and ARF). Activation of GTPase was inhibited by an antibody to Sec23p but not by an antibody that inhibits the budding activity of the other subunit of the Sec23p complex. Also, activation was thermolabile in pure samples of Sec23p that were isolated from two independent sec23 mutant strains. It appears that Sec23p represents a new class of GTPase-activating protein because its sequence shows no similarity to any known member of this family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshihisa, T -- Barlowe, C -- Schekman, R -- New York, N.Y. -- Science. 1993 Mar 5;259(5100):1466-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8451644" target="_blank"〉PubMed〈/a〉
    Keywords: COP-Coated Vesicles ; Cloning, Molecular ; Endoplasmic Reticulum/*metabolism/ultrastructure ; Fungal Proteins/genetics/metabolism ; GTP-Binding Proteins/genetics/*metabolism ; GTPase-Activating Proteins ; Genes, Fungal ; Kinetics ; Macromolecular Substances ; *Monomeric GTP-Binding Proteins ; Mutagenesis ; Proteins/*metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; Spheroplasts/metabolism ; Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1985-11-29
    Description: Clathrin-coated membranes are intimately associated with a variety of protein transport processes in eukaryotic cells, yet no direct test of clathrin function has been possible. The data presented demonstrate that Saccharomyces cerevisiae does not require clathrin for either cell growth or protein secretion. Antiserum to the yeast clathrin heavy chain has been used to isolate a molecular clone of the heavy chain gene (CHC1) from a library of yeast DNA in lambda gt11. Clathrin-deficient mutant yeast have been obtained by replacing the single chromosomal CHC1 gene with a disrupted version of the cloned DNA. Cells harboring a nonfunctional chc1 allele produce no immunoreactive heavy chain polypeptide, and vesicles prepared from mutant cells are devoid of clathrin heavy and light chains. Although clathrin-deficient cells grow two to three times more slowly than normal, secretion of invertase occurs at a nearly normal rate. Therefore protein transport through the secretory pathway is not obligately coupled to the formation of clathrin-coated vesicles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Payne, G S -- Schekman, R -- New York, N.Y. -- Science. 1985 Nov 29;230(4729):1009-14.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2865811" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Transport ; *Cell Physiological Phenomena ; Clathrin/genetics/immunology/*physiology ; Coated Pits, Cell-Membrane/*physiology ; Endosomes/*physiology ; Eukaryotic Cells/*physiology ; Genes ; Genes, Fungal ; Genetic Engineering ; Glycoside Hydrolases/secretion ; Macromolecular Substances ; Molecular Weight ; Proteins/*secretion ; Saccharomyces cerevisiae/genetics ; beta-Fructofuranosidase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...