ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (13)
  • 1
    Publication Date: 2011-08-24
    Description: Stratospheric temperatures on Saturn imply a strong decay of the equatorial winds with altitude. If the decrease in winds reported from recent Hubble Space Telescope images is not a temporal change, then the features tracked must have been at least 130 kilometers higher than in earlier studies. Saturn's south polar stratosphere is warmer than predicted from simple radiative models. The C/H ratio on Saturn is seven times solar, twice Jupiter's. Saturn's ring temperatures have radial variations down to the smallest scale resolved (100 kilometers). Diurnal surface temperature variations on Phoebe suggest a more porous regolith than on the jovian satellites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 307; 5713; 1247-51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: In August 2009 Titan passed through northern spring equinox, and the southern hemisphere passed into fall. Since then, the moon's atmosphere has been closely watched for evidence of the expected seasonal reversal of stratospheric circulation, with increased northern insolation leading to upwelling, and consequent downwelling at southern high latitudes. If the southern winter mirrors the northern winter, this circulation will be traced by increases in short-lived gas species advected downwards from the upper atmosphere to the stratosphere. The Cassini spacecraft in orbit around Saturn carries on board the Composite Infrared Spectrometer (CIRS), which has been actively monitoring the trace gas populations through measurement of the intensity of their infrared emission bands (7-1000 micron). In this presentation we will show fresh evidence from recent CIRS measurements in June 2012, that the shortest-lived and least abundant minor species (C3H4, C4H2, C6H6, HC3N) are indeed increasing dramatically southwards of 50S in the lower stratosphere. Intriguingly, the more stable gases (C2H2, HCN, CO2) have yet to show this trend, and continue to exhibit their 'summer' abundances, decreasing towards the south pole. Possible chemical and dynamical explanations of these results will be discussed , along with the potential of future CIRS measurements to monitor and elucidate these seasonal changes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.7310.2012 , 44th annual meeting of the Division for Planetary Sciences of the American Astronomical Society; Oct 14, 2012 - Oct 19, 2012; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Here we report the measurement of water vapor in Titan's stratosphere using the Cassini Composite Infrared Spectrometer (CIRS). CIRS senses water emissions in the far infrared spectral region near 50 micron, which we have modeled using two independent radiative transfer codes. From the analysis of nadir spectra we have derived a mixing ratio of 0.14 +/- 0.05 ppb at an altitude of 97 km, which corresponds to an integrated (from 0 to 600 km) surface normalized column abundance of 3.7 +/- 1.3 1014 molecules/cm2. In the latitude range 80S to 30N we see no evidence for latitudinal variations in these abundances within the error bars. Using limb observations, we obtained mixing ratios of 0.13 +/- 0.04 ppb at an altitude of 115 km and 0.45 +/- 0.15 ppb at an altitude of 230 km, confirming that the water abundance has a positive vertical gradient as predicted by photochemical models. We have also fitted our data using scaling factors of 0.1-0.6 to these photochemical model profiles, indicating that the models over-predict the water abundance in Titan's lower stratosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN11425 , Icarus; 220; 2; 855-862
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The existence of methane in Titan's atmosphere (approx. 6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of approx 20 Myr. In this paper, we examine the clues available from isotopic ratios (C-12/C-13 and D/H) in Titan's methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH4 collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: (13)CH4, (12)CH3D, and (13)CH3D. From these we compute estimates of C-12/C-13 = 86.5 +/- 8.2 and D/H = (1.59 +/- 0.33) x 10(exp -4) , in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan's methane: CH4 + C2H yields CH3 + C2H2. Using these new measurements and predictions we proceed to model the time evolution of C-12/C-13 and D/H in Titan's methane under several prototypical replenishment scenarios. In our Model 1 (no resupply of CH4), we find that the present-day C-12/C-13 implies that the CH4 entered the atmosphere 60-1600 Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently-most likely less than 10 Myr ago-if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing, We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric methane.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.00185.2012 , The Astrophysical Journal; 749; 2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Water vapor in Titan's middle atmosphere has previously been detected only by disk-average observations from the Infrared Space Observatory (Coustenis et al., 1998). We report here the successful detection of stratospheric water vapor using the Cassini Composite Infrared Spectrometer (CIRS, Flasar et al., 2004) following an earlier null result (de Kok et al., 2007a). CIRS senses water emissions in the far-infrared spectral region near 50 microns, which we have modeled using two independent radiative transfer and inversion codes (NEMESIS, Irwin et al 2008 and ART, Coustenis et al., 2010). From the analysis of nadir spectra we have derived a mixing ratio of (0.14 plus or minus 0.05) ppb at 100 km, corresponding to a column abundance of approximately (3.7 plus or minus 1.3) x 10(exp 14) moles per square centimeter. Using limb observations, we obtained mixing ratios of (0.13 plus or minus 0.04) ppb at 125 km and (0.45 plus or minus 0.15) ppb at 225 km of altitude, confirming that the water abundance has a positive vertical gradient as predicted by photochemical models. In the latitude range (80 deg. S - 30 deg. N) we see no evidence for latitudinal variations in these abundances within the error bars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.00156.2012 , Titan2 Workshop; Apr 03, 2012 - Apr 05, 2012; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We present the first maps of cyanoacetylene isotopologues in Titan's atmosphere, including H(13)CCCN and HCCC(15)N, detected in the 0.9 mm band using the Atacama Large Millimeter/submillimeter array (ALMA) around the time of Titan's (southern winter) solstice in 2017 May. The first high-resolution map of HC3N in its v(sub 7) = 1 vibrationally excited state is also presented, revealing a unique snapshot of the global HC3N distribution, free from the strong optical depth effects that adversely impact the ground-state (v = 0) map. The HC3N emission is found to be strongly enhanced over Titan's south pole (by a factor of 5.7 compared to the north pole), consistent with rapid photochemical loss of HC3N from the summer hemisphere combined with production and transport to the winter pole since the 2015 April ALMA observations. The H(13)CCCN/HCCC(15)N flux ratio is derived at the southern HC3N peak, and implies an HC3N/HCCC(15)N ratio of 67 +/- 14. This represents a significant enrichment in 15N compared with Titan's main molecular nitrogen reservoir, which has a N-14/N-15 ratio of 167, and confirms the importance of photochemistry in determining the nitrogen isotopic ratio in Titan's organic inventory.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN60755 , GSFC-E-DAA-TN60453 , GSFC-E-DAA-TN57301 , The Astrophysical Journal Letters (ISSN 0004-637X) (e-ISSN 1538-4357); 859; 1; L15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Saturns moons, Titan and Enceladus, are two of the Solar Systems most enigmatic bodies and are prime targets for future space exploration. Titan provides an analogue for many processes relevant to the Earth, more generally to outer Solar System bodies, and a growing host of newly discovered icy exoplanets. Processes represented include atmospheric dynamics, complex organic chemistry, meteorological cycles (with methane as a working fluid), astrobiology, surface liquids and lakes, geology, fluvial and aeolian erosion, and interactions with an external plasma environment. In addition, exploring Enceladus over multiple targeted flybys will give us a unique opportunity to further study the most active icy moon in our Solar System as revealed by Cassini and to analyse in situ its active plume with highly capable instrumentation addressing its complex chemistry and dynamics. Enceladus plume likely represents the most accessible samples from an extra-terrestrial liquid water environment in the Solar system, which has far reaching implications for many areas of planetary and biological science. Titan with its massive atmosphere and Enceladus with its active plume are prime planetary objects in the Outer Solar System to perform in situ investigations. In the present paper, we describe the science goals and key measurements to be performed by a future exploration mission involving a Saturn-Titan orbiter and a Titan balloon, which was proposed to ESA in response to the call for definition of the science themes of the next Large-class mission in 2013. The mission scenario is built around three complementary science goals: (A) Titan as an Earth-like system; (B) Enceladus as an active cryovolcanic moon; and (C) Chemistry of Titan and Enceladus - clues for the origin of life. The proposed measurements would provide a step change in our understanding of planetary processes and evolution, with many orders of magnitude improvement in temporal, spatial, and chemical resolution over that which is possible with Cassini-Huygens. This mission concept builds upon the successes of Cassini-Huygens and takes advantage of previous mission heritage in both remote sensing and in situ measurement technologies.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN19941 , Planetary and Space Science (ISSN 0032-0633); 104; Part A; 59-77
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We present spectrally and spatially resolved maps of HNC and HC3N emission from Titan's atmosphere, obtained using the Atacama Large Millimeter/submillimeter Array on 2013 November 17. These maps show anisotropic spatial distributions for both molecules, with resolved emission peaks in Titan's northern and southern hemispheres. TheHC3N maps indicate enhanced concentrations of this molecule over the poles, consistent with previous studies of Titan's photochemistry and atmospheric circulation. Differences between the spectrally integrated flux distributions of HNC and HC3N show that these species are not co-spatial. The observed spectral line shapes are consistent with HNC being concentrated predominantly in the mesosphere and above (at altitudes z approx.. greater than 400 km), whereas HC3N is abundant at a broader range of altitudes (z approx. equal to 70-600 km). From spatial variations in the HC3N line profile, the locations of the HC3N emission peaks are shown to be variable as a function of altitude. The peaks in the integrated emission from HNC and the line core (upper atmosphere) component of HC3N (at z approx. greater than 300 km) are found to be asymmetric with respect to Titan's polar axis, indicating that the mesosphere may be more longitudinally variable than previously thought. The spatially integrated HNC and HC3N spectra are modeled using the NEMESIS planetary atmosphere code and the resulting best-fitting disk-averaged vertical mixing ratio profiles are found to be in reasonable agreement with previous measurements for these species. Vertical column densities of the best-fitting gradient models for HNC and HC3N are 1.9 10(exp 13) per sq.cm and 2.3 10(exp 14) per sq.cm, respectively.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN19742 , Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 795; 2; L30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: We report a wide-ranging study of Titan's surface temperatures by analysis of the Moon's outgoing radiance through a spectral window in the thermal infrared at 19 mm (530/cm) characterized by lower atmospheric opacity. We begin by modeling Cassini Composite Infrared Spectrometer (CIRS) far infrared spectra collected in the period 2004-2010, using a radiative transfer forward model combined with a non-linear optimal estimation inversion method. At low-latitudes, we agree with the HASI near-surface temperature of about 94 K at 101S (Fulchignoni et al., 2005). We find a systematic decrease from the equator toward the poles, hemispherically asymmetric, of approx. 1 K at 60 deg. south and approx. 3 K at 60 deg. north, in general agreement with a previous analysis of CIRS data and with Voyager results from the previous northern winter. Subdividing the available database, corresponding to about one Titan season, into 3 consecutive periods, small seasonal changes of up to 2 K at 60 deg N became noticeable in the results. In addition, clear evidence of diurnal variations of the surface temperatures near the equator are observed for the first time: we find a trend of slowly increasing temperature from the morning to the early afternoon and a faster decrease during the night. The diurnal change is approx. 1.5 K, in agreement with model predictions for a surface with a thermal inertia between 300 and 600 J/ sq. m s (exp -1/2) / K. These results provide important constraints on coupled surface-atmosphere models of Titan's meteorology and atmospheric dynamic.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN9298 , Planetary and Space Science (ISSN 0032-0633); 60; 1; 62-71
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-24
    Description: The flybys of Jupiter by the Voyager spacecraft in 1979, and over two decades later by Cassini in 2000, have provided us with unique datasets from two different epochs, allowing the investigation of seasonal change in the atmosphere. In this paper we model zonal averages of thermal infrared spectra from the two instruments, Voyager 1 IRIS and Cassini CIRS, to retrieve the vertical and meridional profiles of temperature, and the abundances of the two minor hydrocarbons, acetylene (C2H2) and ethane (C2H6). The spatial variation of these gases is controlled by both chemistry and dynamics, and therefore their observed distribution gives us an insight into both processes, We find that the two gases paint quite different pictures of seasonal change. Whilst the 2-D cross-section of C2H6 abundance is slightly increased and more symmetric in 2000 (northern summer solstice) compared to 1979 (northern fall equinox), the major trend of equator to pole increase remains. For C2H2 on tile other hand, the Voyager epoch exhibits almost no latitudinal variation, whilst the Cassini era shows a marked decrease polewards in both hemispheres. At the present time, these experimental findings are in advance of interpretation, as there are no published models of 2-D Jovian seasonal chemical variation available for comparison.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.4465.2011 , Planetary and Space Science; 58; 13; 1667-1680
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...