ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-07-06
    Description: An assay was developed to study plant receptor kinase activation and signaling mechanisms. The extracellular leucine-rich repeat (LRR) and transmembrane domains of the Arabidopsis receptor kinase BRI1, which is implicated in brassinosteroid signaling, were fused to the serine/threonine kinase domain of XA21, the rice disease resistance receptor. The chimeric receptor initiates plant defense responses in rice cells upon treatment with brassinosteroids. These results, which indicate that the extracellular domain of BRI1 perceives brassinosteroids, suggest a general signaling mechanism for the LRR receptor kinases of plants. This system should allow the discovery of ligands for the LRR kinases, the largest group of plant receptor kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Z -- Wang, Z Y -- Li, J -- Zhu, Q -- Lamb, C -- Ronald, P -- Chory, J -- New York, N.Y. -- Science. 2000 Jun 30;288(5475):2360-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Biology Laboratory, The Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10875920" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis ; *Arabidopsis Proteins ; Brassinosteroids ; Cell Death ; Cell Line ; Chitinase/genetics ; Cholestanols/*metabolism/pharmacology ; Gene Expression Regulation, Plant ; Ligands ; Oryza/cytology/*metabolism/microbiology ; Phenylalanine Ammonia-Lyase/genetics ; Plant Proteins/genetics/metabolism ; Plants, Genetically Modified ; Protein Kinases/*chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Respiratory Burst ; *Signal Transduction ; Steroids, Heterocyclic/*metabolism/pharmacology ; Xanthomonas/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-06-15
    Description: Brassinosteroids are essential phytohormones that have crucial roles in plant growth and development. Perception of brassinosteroids requires an active complex of BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED KINASE 1 (BAK1). Recognized by the extracellular leucine-rich repeat (LRR) domain of BRI1, brassinosteroids induce a phosphorylation-mediated cascade to regulate gene expression. Here we present the crystal structures of BRI1(LRR) in free and brassinolide-bound forms. BRI1(LRR) exists as a monomer in crystals and solution independent of brassinolide. It comprises a helical solenoid structure that accommodates a separate insertion domain at its concave surface. Sandwiched between them, brassinolide binds to a hydrophobicity-dominating surface groove on BRI1(LRR). Brassinolide recognition by BRI1(LRR) is through an induced-fit mechanism involving stabilization of two interdomain loops that creates a pronounced non-polar surface groove for the hormone binding. Together, our results define the molecular mechanisms by which BRI1 recognizes brassinosteroids and provide insight into brassinosteroid-induced BRI1 activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉She, Ji -- Han, Zhifu -- Kim, Tae-Wuk -- Wang, Jinjing -- Cheng, Wei -- Chang, Junbiao -- Shi, Shuai -- Wang, Jiawei -- Yang, Maojun -- Wang, Zhi-Yong -- Chai, Jijie -- R01 GM066258/GM/NIGMS NIH HHS/ -- R01GM066258/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Jun 12;474(7352):472-6. doi: 10.1038/nature10178.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory for Protein Sciences of Ministry of Education School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21666666" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*chemistry/*metabolism ; Arabidopsis Proteins/*chemistry/*metabolism ; Binding Sites ; Brassinosteroids ; Cholestanols/chemistry/*metabolism ; Crystallography, X-Ray ; Enzyme Activation ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Protein Binding ; Protein Folding ; Protein Kinases/*chemistry/*metabolism ; Protein Structure, Tertiary ; Steroids, Heterocyclic/chemistry/*metabolism ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-07-26
    Description: Brassinosteroids (BRs) bind to the extracellular domain of the receptor kinase BRI1 to activate a signal transduction cascade that regulates nuclear gene expression and plant development. Many components of the BR signaling pathway have been identified and studied in detail. However, the substrate of BRI1 kinase that transduces the signal to downstream components remains unknown. Proteomic studies of plasma membrane proteins lead to the identification of three homologous BR-signaling kinases (BSK1, BSK2, and BSK3). The BSKs are phosphorylated by BRI1 in vitro and interact with BRI1 in vivo. Genetic and transgenic studies demonstrate that the BSKs represent a small family of kinases that activate BR signaling downstream of BRI1. These results demonstrate that BSKs are the substrates of BRI1 kinase that activate downstream BR signal transduction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730546/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730546/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Wenqiang -- Kim, Tae-Wuk -- Oses-Prieto, Juan A -- Sun, Yu -- Deng, Zhiping -- Zhu, Shengwei -- Wang, Ruiju -- Burlingame, Alma L -- Wang, Zhi-Yong -- R01 GM066258/GM/NIGMS NIH HHS/ -- R01 GM066258-07/GM/NIGMS NIH HHS/ -- R01GM066258/GM/NIGMS NIH HHS/ -- RR012961/RR/NCRR NIH HHS/ -- RR01614/RR/NCRR NIH HHS/ -- RR019934/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2008 Jul 25;321(5888):557-60. doi: 10.1126/science.1156973.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18653891" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/enzymology/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Brassinosteroids ; Cell Membrane/metabolism ; Cholestanols/metabolism/pharmacology ; Molecular Sequence Data ; Mutagenesis, Insertional ; Phosphorylation ; Plants, Genetically Modified ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases ; Proteomics ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Steroids, Heterocyclic/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-203X
    Keywords: Key words Forage and turf grasses ; Italian ryegrass ; Lolium multiflorum ; Microprojectile bombardment ; Transgenic plants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Transgenic forage-type Italian ryegrass (Lolium multiflorum Lam.) plants have been obtained by microprojectile bombardment of embryogenic suspension cells using a chimeric hygromycin phosphotransferase (hph) gene construct driven by rice Act1 5′ regulatory sequences. Parameters for the bombardment of embryogenic suspension cultures with the particle inflow gun were partially optimized using transient expression assays of a chimeric β-glucuronidase (gusA) gene driven by the maize Ubi1 promoter. Stably transformed clones were recovered with a selection scheme using hygromycin in liquid medium followed by a plate selection. Plants were regenerated from 33% of the hygromycin-resistant calli. The transgenic nature of the regenerated plants was demonstrated by Southern hybridization analysis. Expression of the transgene in transformed adult Italian ryegrass plants was confirmed by northern analysis and a hygromycin phosphotransferase enzyme assay.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2242
    Keywords: Asymmetric somatic hybrids ; forage grasses: fescues and ryegrasses ; Plastome-genome interaction ; Festuca arundinacea ; Lolium multiflorum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Intergeneric asymmetric somatic hybrids have been obtained by the fusion of metabolically inactivated protoplasts from embryogenic suspension cultures ofFestuca arundinacea (recipient) and protoplasts from a non-morphogenic cell suspension ofLolium multiflorum (donor) irradiated with 10, 25, 50, 100, 250 and 500 Gy of X-rays. Regenerating calli led to the recovery of genotypically and phenotypically different asymmetric somatic hybridFestulolium plants. The genome composition of the asymmetric somatic hybrid clones was characterized by quantitative dot-blot hybridizations using dispersed repetitive DNA sequences specific to tall fescue and Italian ryegrass. Data from dot-blot hybridizations using two cloned Italian ryegrass-specific sequences as probes showed that irradiation favoured a unidirectional elimination of most or part of the donor chromosomes in asymmetric somatic hybrid clones obtained from fusion experiments using donor protoplasts irradiated at doses ≤ 250 Gy. Irradiation of cells of the donor parent with 500 Gy prior to protoplast fusion produced highly asymmetric nuclear hybrids with over 80% elimination of the donor genome as well as clones showing a complete loss of donor chromosomes. Further information on the degree of asymmetry in regenerated hybrid plants was obtained from chromosomal analysis including in situ hybridizations withL. multiflorum-specific repetitive sequences. A Southern blot hybridization analysis using one chloroplast and six mitochondrial-specific probes revealed preferentially recipient-type organelles in asymmetric somatic hybrid clones obtained from fusion experiments with donor protoplasts irradiated with doses higher than 100 Gy. It is concluded that the irradiation of donor cells before fusion at different doses can be used for producing both nuclear hybrids with limited donor DNA elimination or highly asymmetric nuclear hybrid plants in an intergeneric graminaceous combination. For a wide range of radiation doses tested (25–250Gy), the degree of the species-specific genome elimination from the irradiated partner seems not to be dose dependent. A bias towards recipient-type organelles was apparent when extensive donor nuclear genome elimination occurred.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5060
    Keywords: intergeneric somatic hybrids ; forage grasses ; fescue ; Festuca arundinacea ; F. rubra ; ryegrasses ; Lolium multiflorum ; L. perenne ; Alopecurus pratensis ; species-specific repetitive DNA sequences
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Intergeneric symmetric and asymmetric somatic hybrids have been obtained by fusion of metabolically inactivated protoplasts from embryogenic suspension cultures of tall fescue (Festuca arundinacea Schreb.) and unirradiated or 10–500 Gy-irradiated protoplasts from non-morphogenic cell suspensions of Italian ryegrass (Lolium multiflorum Lam.). Genotypically and phenotypically different somatic hybrid Festulolium mature flowering plants were regenerated. Species-specific sequences from F. arundinacea and L. multiflorum being dispersed and evenly-represented in the corresponding genomes were isolated and used for the molecular characterization of the nuclear make-up of the intergeneric, somatic Festulolium plants recovered. The irradiation of Italian ryegrass protoplasts with ≤250 Gy X-rays prior to fusogenic treatment favoured the unidirectional elimination of most or part of the donor chromosomes. Irradiation of L. multiflorum protoplasts with 500 Gy produced highly asymmetric (over 80% donor genome elimination) nuclear hybrids and clones showing a complete loss of donor chromosomes. The RFLP analysis of the organellar composition in symmetric and asymmetric tall fescue (+) Italian ryegrass regenerants confirmed their somatic hybrid character and revealed a bias towards recipient-type organelles when extensive donor nuclear genome elimination had occurred. Approaches aimed at improving persistence of ryegrasses based on asymmetric somatic hybridization with largely sexually-incompatible grass species (F. rubra and Alopecurus pratensis), and at transferring the cytoplasmic male sterility trait by intra- and inter-specific hybridization in L. multiflorum and L. perenne, have been undertaken.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...