ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-08-11
    Description: Previous work has identified two families of proteins that transport classical neurotransmitters into synaptic vesicles, but the protein responsible for vesicular transport of the principal excitatory transmitter glutamate has remained unknown. We demonstrate that a protein that is unrelated to any known neurotransmitter transporters and that was previously suggested to mediate the Na(+)-dependent uptake of inorganic phosphate across the plasma membrane transports glutamate into synaptic vesicles. In addition, we show that this vesicular glutamate transporter, VGLUT1, exhibits a conductance for chloride that is blocked by glutamate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bellocchio, E E -- Reimer, R J -- Fremeau, R T Jr -- Edwards, R H -- New York, N.Y. -- Science. 2000 Aug 11;289(5481):957-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of California at San Francisco School of Medicine, 513 Parnassus Avenue, San Francisco, CA 94143-0435, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10938000" target="_blank"〉PubMed〈/a〉
    Keywords: 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology ; Adenosine Triphosphate/metabolism ; Animals ; Biological Transport, Active/drug effects ; Carrier Proteins/genetics/*metabolism ; Cell Membrane/metabolism ; Chlorides/metabolism ; Glutamic Acid/*metabolism ; Hydrogen-Ion Concentration ; PC12 Cells ; Phosphates/metabolism ; Potassium Chloride/metabolism ; Rats ; Sodium-Phosphate Cotransporter Proteins ; *Symporters ; Synaptic Vesicles/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Microplasmodia of Physarum polycephalum differentiate into spherules when the CaCl2 concentration of their nutrient medium is increased to 54mM (high-calcium). The salts starvation medium routinely used to induce differentiation contains 8mM CaC12. This medium will not induce spherulation in the absence of a calcium salt; no other metal is essential. High-calcium also induces the spherulation of a strain of Physarum that had not been previously observed to spherulate. The striking increase in superoxide dismutase activity (SOD) and the decrease in glutathione concentration (GSH) that are characteristic of salts-induced spherulation do not occur in salts media containing high-calcium. In the absence of calcium, no significant change in SOD is observed and very little change in GSH occurs. The immediate effect of the oxidative stress associated with spherulation may be the release of calcium stores into the cytosol. The parameters modulating this stress are, in turn, sensitive to exogenous calcium concentrations.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...