ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (2)
  • Spinacia  (2)
  • LUNAR AND PLANETARY EXPLORATION
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
Thema
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Planta 144 (1979), S. 193-200 
    ISSN: 1432-2048
    Schlagwort(e): Carbon metabolism ; Chloroplasts ; Darkness ; Glycolytic pathway ; Oxidative pentose phosphate cycle ; Spinacia
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The conversion of U-labelled [14C]glucose-6-phosphate into other products by a soluble fraction of lysed spinach chloroplasts has been studied. It was found that both an oxidative pentose phosphate cycle and a glycolytic reaction sequence occur in this fraction. The formation of bisphosphates and of triose phosphates was ATP-dependent and occurred mainly via a glycolytic reaction sequence including a phosphofructokinase step. The conversion, of glucose-6-phosphate via the oxidative pentose phosphate cycle stopped with the formation of pentose monophosphates. This was found not to be because of a lack in transaldolase (or transketolase) activity, but because of the high concentration ratios of hexose monophosphate/pentose monophosphate used in our experiments for simulating the conditions in whole chloroplasts in the dark. Some regulatory properties of both the oxidative pentose phosphate cycle and of the glycolytic pathway were studied.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Planta 153 (1981), S. 416-422 
    ISSN: 1432-2048
    Schlagwort(e): Chloroplast ; Photosynthesis (under stress) ; Protoplast ; Spinacia ; Water stress
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract 1. Photosynthesis of leaf slices, mesophyll protoplasts, and intact chloroplasts of spinach was inhibited in hypertonic sorbitol solutions. Sorbitol could be replaced by other nonpenetrating osmotica such as sucrose or glycinebetaine. As a penetrating solute, ethyleneglycol was also inhibitory, but osmolarities required for inhibition of photosynthesis were considerably higher than in the case of non-penetrating osmotica.-2. With leaf slices and protoplasts, 50% inhibition by sorbitol was usually observed at osmotic potentials between 25 and 40 bar. With isolated intact chloroplasts, the osmotic potentials producing 50% inhibition varied considerably. Depending on the growth conditions of the plant material, 50% inhibition occurred between 14 and 40 bar. The integrity of the chloroplast envelope as measured by the accessibility of the thylakoid system for ferricyanide was not affected by osmotic stress.-3. Quantum requirements for CO2 assimilation and reduction of 3-phosphoglycerate or nitrite by intact chloroplasts increased under osmotic stress. The increase was larger for CO2 reduction than for reduction of 3-phosphoglycerate or nitrite.-4. In intact chloroplasts, electron transport to methylviologen was not much affected by osmotic stress. Basal electron transport was not stimulated, suggesting absence of uncoupling.-5. The increase in ATP/ADP ratios on illumination of intact chloroplasts was slower at an osmotic potential of 36 bar than at 11 bar.-6. The results indicate that inhibition of photosynthesis is not caused by the sensitivity of a single photosynthetic reaction to increased osmotic potentials. Rather, several reactions are sensitive to water stress. Osmotic stress acts on the photosynthetic apparatus mainly at the level of dark reactions and ATP synthesis, and much less on primary photoreactions or electron transport, between water and the primary oxidant of photosystem I.-7. The different sensitivity of chloroplasts to penetrating and non-penetrating solutes and the observed variability of chloroplast sensitivity to stress suggests that the reduction in water potential is not directly responsible for damage to the photosynthetic apparatus during osmotic stress. Rather, the composition of the chloroplasts appears to be a decisive factor which determines sensitivity or resistance to osmotic stress.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...