ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Man/System Technology and Life Support  (494)
  • Lunar and Planetary Science and Exploration  (389)
  • LUNAR AND PLANETARY EXPLORATION  (304)
  • 1
    Publication Date: 2019-07-12
    Description: Sources in the THz range are required in order for NASA to implement heterodyne instruments in this frequency range. The source that has been demonstrated here will be used for an instrument on the SOFIA platform as well as for upcoming astrophysics missions. There are currently no electronic sources in the 2 3- THz frequency range. An electronically tunable compact source in this frequency range is needed for lab spectroscopy as well as for compact space-deployable heterodyne receivers. This solution for obtaining useful power levels in the 2 3- THz range is based on utilizing power-combined multiplier stages. Utilizing power combining, the input power can be distributed between different multiplier chips and then recombined after the frequency multiplication. A continuous wave (CW) coherent source covering 2.48 2.75 THz, with greater than 10 percent instantaneous and tuning bandwidth, and having l 14 W of output power at room temperature, has been demonstrated. This source is based on a 91.8 101.8-GHz synthesizer followed by a power amplifier and three cascaded frequency triplers. It demonstrates that purely electronic solid-state sources can generate a useful amount of power in a region of the electromagnetic spectrum where lasers (solid-state or gas) were previously the only available coherent sources. The bandwidth, agility, and operability of this THz source has enabled wideband, high-resolution spectroscopic measurements of water, methanol, and carbon monoxide with a resolution and signal-to-noise ratio unmatched by other existing systems, providing new insight in the physics of these molecules. Further - more, the power and optical beam quality are high enough to observe the Lamb-dip effect in water. The source frequency has an absolute accuracy better than 1 part in 1012, and the spectrometer achieves sub-Doppler frequency resolution better than 1 part in 108. The harmonic purity is better than 25 dB. This source can serve as a local oscillator for a variety of heterodyne systems, and can be used as a method for precision control of more powerful but much less frequency-agile quantum mechanical terahertz sources.
    Keywords: Man/System Technology and Life Support
    Type: NPO-47903 , NASA Tech Briefs, December 2011; 9-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TM-2006-213485 , A-06004
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-14
    Description: Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.
    Keywords: Man/System Technology and Life Support
    Type: 35th International Conference on Environmental Systems; Jul 11, 2005 - Jul 14, 2005; Rome; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Impact processes at all scales have been involved in the formation and subsequent evolution of Gale crater. Small impact craters in the vicinity of the Curiosity MSL landing site and rover traverse during the 364 Sols after landing have been studied both from orbit and the surface. Evidence for the effect of impacts on basement outcrops may include loose blocks of sandstone and conglomerate, and disrupted (fractured) sedimentary layers, which are not obviously displaced by erosion. Impact ejecta blankets are likely to be present, but in the absence of distinct glass or impact melt phases are difficult to distinguish from sedimentary/volcaniclastic breccia and conglomerate deposits. The occurrence of individual blocks with diverse petrological characteristics, including igneous textures, have been identified across the surface of Bradbury Rise, and some of these blocks may represent distal ejecta from larger craters in the vicinity of Gale. Distal ejecta may also occur in the form of impact spherules identified in the sediments and drift material. Possible examples of impactites in the form of shatter cones, shocked rocks, and ropy textured fragments of materials that may have been molten have been observed, but cannot be uniquely confirmed. Modification by aeolian processes of craters smaller than 40 m in diameter observed in this study, are indicated by erosion of crater rims, and infill of craters with aeolian and airfall dust deposits. Estimates for resurfacing suggest that craters less than 15 m in diameter may represent steady state between production and destruction. The smallest candidate impact crater observed is 0.6 m in diameter. The observed crater record and other data are consistent with a resurfacing rate of the order of 10 mm/Myr; considerably greater than the rate from impact cratering alone, but remarkably lower than terrestrial erosion rates.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN22564 , Icarus (ISSN 0019-1035); 249; 108-128
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-29
    Description: A new method of analyzing multispectral images takes advantage of the spectral variation from pixel to pixel that is typical for natural planetary surfaces, and treats all pixels as potential mixtures of spectrally distinct materials. For Viking Lander images, mixtures of only three spectral end members (rock, soil, and shade) are sufficient to explain the observed spectral variation to the level of instrumental noise. It was concluded that a large portion of the Martian surface consists of only two spectrally distinct materials, basalt and palgonitic soil. It is emphasized, however, that as viewed through the three broad bandpasses of Viking Orbiter, other materials cannot be distinguished from the mixtures.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., MEVTV Workshop on Nature and Composition of Surface Units on Mars; p 13-15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-06-07
    Description: The 7.8 micrometer emission from the nu(sub 4) band of methane (CH4) is a regularly observed feature in the stratosphere of all the giant planets and Titan. On Jupiter, enhancements in this emission are associated with the infrared hot spots in the auroral zone. Attempts to model this phenomenon in particular, and to understand the role of methane in general, have been hampered in part by a lack of adequate laboratory measurements of the collisional relaxation times for the nu(sub 3) and nu(sub 4) levels over the appropriate temperature range. To provide this needed data, a series of laboratory experiments were initiated. In the experimental arrangement the nu(sub3) band of methane is pumped at 3.3 micrometers using a pulsed infrared source (Nd:YAG/dye laser system equipped with a wave-length extender). The radiative lifetime of the nu(sub 3) level (approximately 37 ms) is much shorter than the nu(sub 4) lifetime (approximately 390 ms); however, a rapid V-V energy transfer rate ensures that the nu(sub 4) level is substantially populated. The photoacoustic technique is used to acquire relaxation rate information. The experiments are performed using a low-temperature, low-pressure cell. Experimental apparatus and technique are described. In addition some of the experimental difficulties associated with making these measurements are discussed and some preliminary results are presented.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: First International Conference on Laboratory Research for Planetary Atmospheres; p 157-163
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-11
    Description: The Mars Climate Orbiter (MCO) was launched on December 11, 1998. The MCO was to arrive at Mars and begin orbit insertion on September 23, 1999. The Mars Orbit Insertion (MOI) burn, a 16-minute maneuver to slow the spacecraft and enable capture into an orbit around Mars, began on schedule. Five minutes into the maneuver, and approximately 49 seconds before the anticipated time for loss of communication, the MCO was occulted by Mars. Thereafter, no contact with the spacecraft could be established. On September 24, 1999, an internal JPL team (the MCO Peer Review Team) was appointed to help investigate the reason for the loss of spacecraft signal. The Peer Review Team's findings are presented in this report.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-01-25
    Description: The rocks and soils of the Moon will be the raw materials for fuels and construction needs at a lunar base. This includes sources of materials for the generation of hydrogen, oxygen, metals, and other potential construction materials. For most of the bulk material needs, the regolith, and its less than 1 cm fraction, the soil, will suffice. But for specific mineral resources, it may be necessary to concentrate minerals from rocks or soils, and it is not always obvious which is the more appropriate feedstock. Besides an appreciation of site geology, the mineralogy and petrography of local rocks and soils is important for consideration of the resources which can provide feedstocks of ilmenite, glass, agglutinates, anorthite, etc. In such studies, it is very time-consuming and practically impossible to correlate particle counts (the traditional method of characterizing lunar soil petrography) with accurate modal analyses and with mineral associations in multi-mineralic grains. But x ray digital imaging, using x rays characteristic of each element, makes all this possible and much more (e.g., size and shape analysis). An application of beneficiation image analysis, in use in our lab (Oxford Instr. EDS and Cameca SX-50 EMP), was demonstrated to study mineral liberation from lunar rocks and soils. Results of x ray image analysis are presented.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z; p 1409-1410
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-01-25
    Description: The pristine glasses of Delano are the most primitive lunar basaltic magma compositions discovered to date. They are grouped into two (and possibly three) arrays: a low-alumina array and a high alumina array. These glasses are very olivine normative and are multiply saturated at pressures of approximately 20 kbar, implying a depth of origin of 400 to 500 km in the Moon. Thus, these glasses appear to be the best candidates for primitive partial melts of the upper lunar mantle. One of the most perplexing characteristics of the pristine glasses is a positive correlation between Ni and SiO2 within each array. This is contrary to the terrestrial experience, where Ni is observed to positively correlate with MgO and negatively correlate with SiO2. These systematics are believed to be due to the depletion of Ni by olivine fractionation. The difference between the lunar and terrestrial Ni vs. SiO2 trends may be partially ascribed to the Ti-rich component. In the case of the pristine glasses, SiO2 increases not because of olivine fractionation, but because they contain less of the high-Ti component. An attempt was made to model this variation in Ni and SiO2 with a simple assimilation-fractional crystallization (AFC) model. Silica and Ni both decreased dramatically as the AFC process proceeded. Only 15 to 20 percent AFC was necessary to produce the observed variation, and the SiO2 vs. Ni variation was modeled quite well. The D(Ni) for olivine/liquid in this model was taken to be 10 and the olivine was assumed to be Fe sub 80. However, the results of this model for Ti and Mg were less than satisfactory. It seemed difficult to achieve the high TiO2 contents of some glasses (16 to 17 wt. percent) by this method. Continual addition of ilmenite by AFC could indeed raise the titania concentrations to the necessary levels, but only by enriching the magma in FeO and greatly depleting the magma in MgO. An attempt was made to circumvent this problem by using armalcolite, (Fe, Mg)Ti2O5, in the AFC model, and the results are presented.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Workshop on Mare Volcanism and Basalt Petrogenesis: Astounding Fundamental Concepts (AFC) Developed Over the Last Fifteen Years; p 21-22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: The pneumatic soil sampler concept was successfully demonstrated by penetrating a Martian simulant soil to a depth of 2 meters. Working gas pressure, composition, and pulsing were evaluated with the objective of minimizing gas usage. Also, the probe penetration force was investigated with the objective of minimizing probe weight. Gas and probe penetration force, while not yet optimized, are within the range which make the soil sampler concept feasible. While the tests described in this report did not answer all the questions and address all the variables associated with pneumatic soil sampling, valuable data experience and knowledge were gained which can be used to further develop the concept.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA-CR-197539 , NAS 1.26:197539
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...