ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Key words: karst hydrology  (1)
  • Porous media  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Stochastic environmental research and risk assessment 8 (1994), S. 139-155 
    ISSN: 1436-3259
    Keywords: Porous media ; random media ; random fields ; groundwater flow ; stochastic hydrology ; stochastic partial differential equations ; perturbation methods ; Taylor expansions ; hierarchical systems ; Green's functions ; effective conductivity ; homogenization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Notes: Abstract This paper investigates analytical solutions of stochastic Darcy flow in randomly heterogeneous porous media. We focus on infinite series solutions of the steady-state equations in the case of continuous porous media whose saturated log-conductivity (lnK) is a gaussian random field. The standard deviation of lnK is denoted ‘σ’. The solution method is based on a Taylor series expansion in terms of parameter σ, around the value σ=0, of the hydraulic head (H) and gradient (J). The head solution H is expressed, for any spatial dimension, as an infinite hierarchy of Green's function integrals, and the hydraulic gradient J is given by a linear first-order recursion involving a stochastic integral operator. The convergence of the ‘σ-expansion’ solution is not guaranteed a priori. In one dimension, however, we prove convergence by solving explicitly the hierarchical sequence of equations to all orders. An ‘infinite-order stochastic solution is obtained in the form of a σ-power series that converges for any finite value of σ. It is pointed out that other expansion methods based on K rather than lnK yield divergent series. The infinite-order solution depends on the integration method and the boundary conditions imposed on individual order equations. The most flexible and general method is that based on Laplacian Green's functions and boundary integrals. Imposing zero head conditions for all orders greater than one yields meaningful far-field gradient conditions. The whole approach can serve as a basis for treatment of higher-dimensional problems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Stochastic environmental research and risk assessment 13 (1999), S. 337-364 
    ISSN: 1436-3259
    Keywords: Key words: karst hydrology ; floods ; kernel identification ; nonlinear models ; Volterra expansions.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Notes: Abstract. Karstic formations function as three-dimensional (3D) hydrological basins, with both surface and subsurface flows through fissures, natural conduits, underground streams and reservoirs. The main characteristic of karstic formations is their significant 3D physical heterogeneity at all scales, from fine fissuration to large holes and conduits. This leads to dynamic and temporal variability, e.g. highly variable flow rates, due to several concurrent flow regimes with several distinct response times. The temporal hydrologic response of karstic basins is studied here from an input/output, systems analysis viewpoint. The hydraulic behaviour of the basins is approached via the relationship between hydrometeorological inputs and outputs. These processes are represented and modeled as random, self-correlated and cross-correlated, stationary time processes. More precisely, for each site-specific case presented here, the input process is the total rainfall on the basin and the output process is the discharge rate at the outlet of the basin (karstic spring). In the absence of other data, these time processes embody all the available information concerning a given karstic basin. In this paper, we first present a brief discussion of the physical structure of karstic systems. Then, we formulate linear and nonlinear models, i.e. functional relations between rainfall and runoff, and methods for identifying the kernel and coefficients of the functionals (deterministic vs. statistical; error minimisation vs. polynomial projection). These are based mostly on Volterra first order (linear) or second order (nonlinear) convolution. In addition, a new nonlinear threshold model is developed, based on the frequency distribution of interannual mean daily runoff. Finally, the different models and identification methods are applied to two karstic watersheds in the french Pyrénées mountains, using long sequences of rainfall and spring outflow data at two different sampling rates (daily and semi-hourly). The accuracy of nonlinear and linear rainfall-runoff models is tested at three time scales: long interannual scale (20 years of daily data), medium or seasonal scale (3 months of semi-hourly data), and short scale or “flood scale” (2 days of semi-hourly data). The model predictions are analysed in terms of global statistical accuracy and in terms of accuracy with respect to high flow events (floods).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...