ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Individual stochasticity  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2015. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Monographs 85 (2015): 605–624, doi:10.1890/14-1834.1.
    Description: Extreme climatic conditions and their ecological impacts are currently emerging as critical features of climate change. We studied extreme sea ice condition (ESIC) and found it impacts both life-history traits and population dynamics of an Antarctic seabird well beyond ordinary variability. The Southern Fulmar (Fulmarus glacialoides) is an ice-dependent seabird, and individuals forage near the ice edge. During an extreme unfavorable year (when sea ice area is reduced and distance between ice edge and colony is high), observed foraging trips were greater in distance and duration. As a result, adults brought less food to their chicks, which fledged in the poorest body condition. During such unfavorable years, breeding success was extremely low and population growth rate (λ) was greatly reduced. The opposite pattern occurred during extreme favorable years. Previous breeding status had a strong influence on life-history traits and population dynamics, and their responses to extreme conditions. Successful breeders had a higher chance of breeding and raising their chick successfully during the following breeding season as compared to other breeding stages, regardless of environmental conditions. Consequently, they coped better with unfavorable ESIC. The effect of change in successful breeder vital rates on λ was greater than for other stages' vital rates, except for pre-breeder recruitment probabilities, which most affected λ. For environments characterized by ordinary sea ice conditions, interindividual differences were more likely to persist over the life of individuals and randomness in individual pathways was low, suggesting individual heterogeneity in vital rates arising from innate or acquired phenotypic traits. Additionally, unfavorable ESIC tended to exacerbate individual differences in intrinsic quality, expressed through differences in reproductive status. We discuss the strong effects of ESIC on Southern Fulmar life-history traits in an evolutionary context. ESICs strongly affect fitness components and act as potentially important agents of natural selection of life histories related to intrinsic quality and intermittent breeding. In addition, recruitment is a highly plastic trait that, if heritable, could have a critical role in evolution of life histories. Finally, we find that changes in the frequency of extreme events may strongly impact persistence of Southern Fulmar populations.
    Description: S. Jenouvrier acknowledges support from Ocean Life Institute and WHOI Unrestricted funds, and NSF projects #1257545 and #1246407.
    Keywords: Body condition ; Foraging behaviors ; Fulmarus glacialoides ; Individual quality ; Individual stochasticity ; Life-history trade-offs ; Sea ice ; Sensitivities ; Southern Fulmar ; Stochastic population growth ; Terre Adelie, East Antarctica
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-21
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jenouvrier, S., Aubry, L., van Daalen, S., Barbraud, C., Weimerskirch, H., & Caswell, H. When the going gets tough, the tough get going: effect of extreme climate on an Antarctic seabird’s life history. Ecology Letters, 25, (2022): 2120– 2131, https://doi.org/10.1111/ele.14076.
    Description: Individuals differ in many ways. Most produce few offspring; a handful produce many. Some die early; others live to old age. It is tempting to attribute these differences in outcomes to differences in individual traits, and thus in the demographic rates experienced. However, there is more to individual variation than meets the eye of the biologist. Even among individuals sharing identical traits, life history outcomes (life expectancy and lifetime reproduction) will vary due to individual stochasticity, that is to chance. Quantifying the contributions of heterogeneity and chance is essential to understand natural variability. Interindividual differences vary across environmental conditions, hence heterogeneity and stochasticity depend on environmental conditions. We show that favourable conditions increase the contributions of individual stochasticity, and reduce the contributions of heterogeneity, to variance in demographic outcomes in a seabird population. The opposite is true under poor conditions. This result has important consequence for understanding the ecology and evolution of life history strategies.
    Description: We acknowledge Institute Paul Emile Victor (Programme IPEV 109), and Terres Australes et Antarctiques Françaises for logistical and financial support in Terre Adélie. The study is a contribution to the Program EARLYLIFE funded by a European Research Council Advanced Grant under the European Community's Seven Framework Program FP7/2007-2013 (Grant Agreement ERC-2012-ADG_20120314 to Henri Weimerskirch), to the program SENSEI funded by the BNP Paribas Foundation, and to the Program INDSTOCH funded by ERC Advanced Grant 322989 to Hal Caswell. SJ acknowledges support from Ocean Life Institute and WHOI Unrestricted funds, and NSF projects DEB-1257545, OPP-1246407 and OPP-1840058.
    Keywords: Fixed heterogeneity ; Frailty ; Individual quality ; Individual stochasticity ; Unobserved individual heterogeneity ; SICs
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...