ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0789
    Keywords: Key words Spent mushroom compost ; Fertilizer ; Soil ; Incubation ; Kinetic models
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The release of sulphate-sulphur (SO4 2–-S), potassium (K), calcium (Ca) and magnesium (Mg) from soil amended with spent mushroom compost (SMC), a by-product of mushroom production, was measured for 16 weeks in an open laboratory incubation at 25°C. Rates of application were up to 80 t ha–1 moist SMC (0.84% SMC dry weight) both with and without inorganic fertilizer. The rates of nutrient application in the inorganic fertilizer were: 338 kg ha–1 N, 100 kg ha–1 of both phosphorus and K, and 114 kg ha–1 S. SMC contains 1.7% K, 6.5% Ca, 0.4% Mg and 1.2% S (of which 87% is inorganic), and has a carbon:sulphur ratio of 26. The release of SO4 2–-S was rapid, and was described using either a first or mixed order exponential equation, or (underestimated) by the CENTURY model. The release of K, Ca and Mg was initially rapid (first order) and then declined to a constant rate (zero order). Their release was also described using first/first order or first order/parabolic diffusion equations. Model parameters indicated the relative sizes of both readily releasable and recalcitrant nutrient pools. The recovery of SMC-supplied nutrients in the absence of fertilizer was 75–83% of the S, 40–45% of the K, 14–20% of the Ca and 43–66% of the Mg. When fertilizer was applied 33–45% of the S, 22–36% of the K, 12–24% of the Ca and –4 to 20% of the Mg that were supplied by the SMC and fertilizer were recovered in the leachate. The generally lower nutrient recovery when fertilizer was applied could have resulted from the incomplete recovery of fertilizer S and K, from soil fixation of applied nutrients, and from the lower pH following fertilizer application.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0867
    Keywords: Dry matter yield ; exchangeable Ca ; phosphate rocks ; P sorption capacity ; relative agronomic effectiveness ; substitution ratio
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Six phosphate rocks (PRs) of varying reactivities were compared with monocalcium phosphate (MCP) in a glasshouse experiment growing perennial ryegrass (Lolium perenne cv. Nui) as the test plant on four soils of contrasting P sorption capacity and exchangeable Ca. The cumulative dry matter yield over 10 harvests showed a significant response to P application in all soils. Based on relative yield and P uptake, MCP was the most effective P fertilizer followed by the reactive phosphate rocks, which were superior to the unreactive rocks in all soils. The relative agronomic effectiveness (RAE) and substitution ratio (SR) of individual PR fertilizers, calculated with respect to MCP using the methods of ‘vertical’ and ‘horizontal’ comparison, respectively, were similar over a range of fertilizer rate. There was a decline or slight increase in the performance of PRs with time in the low P sorption soils but a consistent increase in the high P sorption soils. Some initial influence of exchangeable Ca content of the soils on the relative performance of PRs was also observed. Generally the PRs performed better in high P sorption soils than low P sorption soils and in low exchangeable Ca soils than high exchangeable Ca soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0867
    Keywords: Mixed cation-anion exchange resin P ; Olsen P ; phosphate rocks ; P sorption capacity ; P sources ; Resin P ; ryegrass ; soil testing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A glasshouse experiment was conducted on four soils contrasting in P sorption capacity and exchangeable Ca content with perennial ryegrass using six phosphate rock (PR) sources and a soluble P source applied at four rates (including a control). After three harvests (11 weeks) replicate pots of each treatment were destructively sampled and Olsen P and mixed cation-anion exchange resin (Resin P) extractions carried out. The remaining replicated treatments were harvested another seven times (during 41 weeks). Yields (for the last seven harvests) were expressed as percentages of the maximum yield attainable with MCP. In general, the Resin P test extracted more than twice as much P as the Olsen test. There was a significant increase in Resin P with an increase in the amount of each P source in all four soils, but Olsen P values were not significantly different for soils treated with different rates of each phosphate rock. The abilities of the Olsen and mixed resin soil P tests to predict the cumulative dry matter yield from 7 harvests and the relative yield of ryegrass were compared. Correlations between measured yield (for the last 7 harvests) and soil test for each soil, and relative yield and soil test for all four soils were assessed by regression analysis using Mitscherlich-type models. When dry matter yields were regressed separately against soil test values for each soil, the Resin P consistently accounted for 18–28% more of the variation in yield than did Olsen P. For Resin P a single function was not significantly different from the separate functions fitted to MCP and PR treatments. However, for Olsen P the separate functions for the MCP and PR treatments varied significantly from the single fitted function. The Resin P test (R2 = 0.84) was a better predictor of relative yields over this range of soils than the Olsen test (R2 = 0.75). Two regression models based on the regression of relative yield for MCP treatments against either Olsen or Resin were developed. These models were then fitted to the relative yield data on soils fertilized with PRs only. The Olsen P model was found to be a poorer predictor (R2 = 0.41) than the Resin P model (R2 = 0.73) because it underestimated the observed yield of the PR treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...