ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-10-17
    Description: Over 30% of proteins are secreted across or integrated into membranes. Their newly synthesized forms contain either cleavable signal sequences or non-cleavable membrane anchor sequences, which direct them to the evolutionarily conserved Sec translocon (SecYEG in prokaryotes and Sec61, comprising alpha-, gamma- and beta-subunits, in eukaryotes). The translocon then functions as a protein-conducting channel. These processes of protein localization occur either at or after translation. In bacteria, the SecA ATPase drives post-translational translocation. The only high-resolution structure of a translocon available so far is that for SecYEbeta from the archaeon Methanococcus jannaschii, which lacks SecA. Here we present the 3.2-A-resolution crystal structure of the SecYE translocon from a SecA-containing organism, Thermus thermophilus. The structure, solved as a complex with an anti-SecY Fab fragment, revealed a 'pre-open' state of SecYE, in which several transmembrane helices are shifted, as compared to the previous SecYEbeta structure, to create a hydrophobic crack open to the cytoplasm. Fab and SecA bind to a common site at the tip of the cytoplasmic domain of SecY. Molecular dynamics and disulphide mapping analyses suggest that the pre-open state might represent a SecYE conformational transition that is inducible by SecA binding. Moreover, we identified a SecA-SecYE interface that comprises SecA residues originally buried inside the protein, indicating that both the channel and the motor components of the Sec machinery undergo cooperative conformational changes on formation of the functional complex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590585/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590585/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsukazaki, Tomoya -- Mori, Hiroyuki -- Fukai, Shuya -- Ishitani, Ryuichiro -- Mori, Takaharu -- Dohmae, Naoshi -- Perederina, Anna -- Sugita, Yuji -- Vassylyev, Dmitry G -- Ito, Koreaki -- Nureki, Osamu -- R01 GM074252/GM/NIGMS NIH HHS/ -- R01 GM074252-04/GM/NIGMS NIH HHS/ -- R01 GM074840/GM/NIGMS NIH HHS/ -- R01 GM074840-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Oct 16;455(7215):988-91. doi: 10.1038/nature07421.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18923527" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics/immunology/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Disulfides/chemistry/metabolism ; Hydrophobic and Hydrophilic Interactions ; Immunoglobulin Fab Fragments/chemistry/immunology ; Methanococcus/chemistry/enzymology ; Models, Biological ; Models, Molecular ; Protein Binding ; Protein Structure, Tertiary ; Thermus thermophilus/*chemistry/*enzymology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-18
    Description: Newly synthesized membrane proteins must be accurately inserted into the membrane, folded and assembled for proper functioning. The protein YidC inserts its substrates into the membrane, thereby facilitating membrane protein assembly in bacteria; the homologous proteins Oxa1 and Alb3 have the same function in mitochondria and chloroplasts, respectively. In the bacterial cytoplasmic membrane, YidC functions as an independent insertase and a membrane chaperone in cooperation with the translocon SecYEG. Here we present the crystal structure of YidC from Bacillus halodurans, at 2.4 A resolution. The structure reveals a novel fold, in which five conserved transmembrane helices form a positively charged hydrophilic groove that is open towards both the lipid bilayer and the cytoplasm but closed on the extracellular side. Structure-based in vivo analyses reveal that a conserved arginine residue in the groove is important for the insertion of membrane proteins by YidC. We propose an insertion mechanism for single-spanning membrane proteins, in which the hydrophilic environment generated by the groove recruits the extracellular regions of substrates into the low-dielectric environment of the membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumazaki, Kaoru -- Chiba, Shinobu -- Takemoto, Mizuki -- Furukawa, Arata -- Nishiyama, Ken-ichi -- Sugano, Yasunori -- Mori, Takaharu -- Dohmae, Naoshi -- Hirata, Kunio -- Nakada-Nakura, Yoshiko -- Maturana, Andres D -- Tanaka, Yoshiki -- Mori, Hiroyuki -- Sugita, Yuji -- Arisaka, Fumio -- Ito, Koreaki -- Ishitani, Ryuichiro -- Tsukazaki, Tomoya -- Nureki, Osamu -- England -- Nature. 2014 May 22;509(7501):516-20. doi: 10.1038/nature13167. Epub 2014 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan [3]. ; 1] Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan [2]. ; 1] Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan. ; Department of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan. ; Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan. ; Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan. ; Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan. ; SR Life Science Instrumentation Unit, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan. ; Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. ; Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan. ; Institute for Virus Research, Kyoto University, Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan. ; Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan. ; Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan. ; 1] Department of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan [2] JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24739968" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/metabolism ; Bacillus/*chemistry ; Bacterial Proteins/*chemistry/*metabolism ; Cell Membrane/chemistry/*metabolism ; Conserved Sequence ; Crystallography, X-Ray ; Hydrophobic and Hydrophilic Interactions ; Membrane Transport Proteins/*chemistry/*metabolism ; Molecular Chaperones/chemistry/metabolism ; Protein Folding ; Static Electricity ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...