ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-06-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luo, Ji -- Elledge, Stephen J -- England -- Nature. 2008 Jun 19;453(7198):995-6. doi: 10.1038/453995a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18563141" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Transformation, Neoplastic/*genetics ; Colonic Neoplasms/genetics/pathology ; Gene Expression Regulation, Neoplastic ; Genes, p53/genetics ; Genes, ras/genetics ; Humans ; Models, Biological ; Oncogenes/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-09-11
    Description: Rapid release of prepublication data has served the field of genomics well. Attendees at a workshop in Toronto recommend extending the practice to other biological data sets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073843/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073843/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Toronto International Data Release Workshop Authors -- Birney, Ewan -- Hudson, Thomas J -- Green, Eric D -- Gunter, Chris -- Eddy, Sean -- Rogers, Jane -- Harris, Jennifer R -- Ehrlich, S Dusko -- Apweiler, Rolf -- Austin, Christopher P -- Berglund, Lisa -- Bobrow, Martin -- Bountra, Chas -- Brookes, Anthony J -- Cambon-Thomsen, Anne -- Carter, Nigel P -- Chisholm, Rex L -- Contreras, Jorge L -- Cooke, Robert M -- Crosby, William L -- Dewar, Ken -- Durbin, Richard -- Dyke, Stephanie O M -- Ecker, Joseph R -- El Emam, Khaled -- Feuk, Lars -- Gabriel, Stacey B -- Gallacher, John -- Gelbart, William M -- Granell, Antoni -- Guarner, Francisco -- Hubbard, Tim -- Jackson, Scott A -- Jennings, Jennifer L -- Joly, Yann -- Jones, Steven M -- Kaye, Jane -- Kennedy, Karen L -- Knoppers, Bartha Maria -- Kyrpides, Nikos C -- Lowrance, William W -- Luo, Jingchu -- MacKay, John J -- Martin-Rivera, Luis -- McCombie, W Richard -- McPherson, John D -- Miller, Linda -- Miller, Webb -- Moerman, Don -- Mooser, Vincent -- Morton, Cynthia C -- Ostell, James M -- Ouellette, B F Francis -- Parkhill, Julian -- Raina, Parminder S -- Rawlings, Christopher -- Scherer, Steven E -- Scherer, Stephen W -- Schofield, Paul N -- Sensen, Christoph W -- Stodden, Victoria C -- Sussman, Michael R -- Tanaka, Toshihiro -- Thornton, Janet -- Tsunoda, Tatsuhiko -- Valle, David -- Vuorio, Eero I -- Walker, Neil M -- Wallace, Susan -- Weinstock, George -- Whitman, William B -- Worley, Kim C -- Wu, Cathy -- Wu, Jiayan -- Yu, Jun -- 062023/Wellcome Trust/United Kingdom -- 077198/Wellcome Trust/United Kingdom -- U54 HG003273/HG/NHGRI NIH HHS/ -- U54 HG003273-04/HG/NHGRI NIH HHS/ -- U54 HG003273-04S1/HG/NHGRI NIH HHS/ -- U54 HG003273-05/HG/NHGRI NIH HHS/ -- U54 HG003273-05S1/HG/NHGRI NIH HHS/ -- U54 HG003273-05S2/HG/NHGRI NIH HHS/ -- U54 HG003273-06/HG/NHGRI NIH HHS/ -- U54 HG003273-06S1/HG/NHGRI NIH HHS/ -- U54 HG003273-06S2/HG/NHGRI NIH HHS/ -- U54 HG003273-07/HG/NHGRI NIH HHS/ -- U54 HG003273-08/HG/NHGRI NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Sep 10;461(7261):168-70. doi: 10.1038/461168a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19741685" target="_blank"〉PubMed〈/a〉
    Keywords: *Access to Information ; Cooperative Behavior ; *Guidelines as Topic ; Human Genome Project ; Humans ; Ontario ; *Publishing/ethics/standards ; *Research/standards ; Research Personnel/ethics/standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-06-08
    Description: A large number of computer vision algorithms for finding intensity edges, computing motion, depth, and color, and recovering the three-dimensional shape of objects have been developed within the framework of minimizing an associated "energy" or "cost" functional. Particularly successful has been the introduction of binary variables coding for discontinuities in intensity, optical flow field, depth, and other variables, allowing image segmentation to occur in these modalities. The associated nonconvex variational functionals can be mapped onto analog, resistive networks, such that the stationary voltage distribution in the network corresponds to a minimum of the functional. The performance of an experimental analog very-large-scale integration (VLSI) circuit implementing the nonlinear resistive network for the problem of two-dimensional surface interpolation in the presence of discontinuities is demonstrated; this circuit is implemented in complementary metal oxide semiconductor technology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harris, J G -- Koch, C -- Luo, J -- New York, N.Y. -- Science. 1990 Jun 8;248(4960):1209-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Computation and Neural Systems Program, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2349479" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Computer Graphics ; *Computer Simulation ; Humans ; *Vision, Ocular
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-05-26
    Description: Tumors exhibit numerous recurrent hemizygous focal deletions that contain no known tumor suppressors and are poorly understood. To investigate whether these regions contribute to tumorigenesis, we searched genetically for genes with cancer-relevant properties within these hemizygous deletions. We identified STOP and GO genes, which negatively and positively regulate proliferation, respectively. STOP genes include many known tumor suppressors, whereas GO genes are enriched for essential genes. Analysis of their chromosomal distribution revealed that recurring deletions preferentially overrepresent STOP genes and underrepresent GO genes. We propose a hypothesis called the cancer gene island model, whereby gene islands encompassing high densities of STOP genes and low densities of GO genes are hemizygously deleted to maximize proliferative fitness through cumulative haploinsufficiencies. Because hundreds to thousands of genes are hemizygously deleted per tumor, this mechanism may help to drive tumorigenesis across many cancer types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027969/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027969/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solimini, Nicole L -- Xu, Qikai -- Mermel, Craig H -- Liang, Anthony C -- Schlabach, Michael R -- Luo, Ji -- Burrows, Anna E -- Anselmo, Anthony N -- Bredemeyer, Andrea L -- Li, Mamie Z -- Beroukhim, Rameen -- Meyerson, Matthew -- Elledge, Stephen J -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32GM07753/GM/NIGMS NIH HHS/ -- U54CA143798/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jul 6;337(6090):104-9. doi: 10.1126/science.1219580. Epub 2012 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard University Medical School, and Division of Genetics, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22628553" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; *Cell Transformation, Neoplastic ; Chromosome Mapping ; Genes, Essential ; *Genes, Neoplasm ; Genes, Recessive ; Genes, Tumor Suppressor ; *Haploinsufficiency ; Hemizygote ; Humans ; Models, Genetic ; Neoplasms/*genetics/*pathology ; Oncogenes ; *Sequence Deletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-10-12
    Description: The motor abnormalities of Parkinson's disease (PD) are caused by alterations in basal ganglia network activity, including disinhibition of the subthalamic nucleus (STN), and excessive activity of the major output nuclei. Using adeno-associated viral vector-mediated somatic cell gene transfer, we expressed glutamic acid decarboxylase (GAD), the enzyme that catalyzes synthesis of the neurotransmitter GABA, in excitatory glutamatergic neurons of the STN in rats. The transduced neurons, when driven by electrical stimulation, produced mixed inhibitory responses associated with GABA release. This phenotypic shift resulted in strong neuroprotection of nigral dopamine neurons and rescue of the parkinsonian behavioral phenotype. This strategy suggests that there is plasticity between excitatory and inhibitory neurotransmission in the mammalian brain that could be exploited for therapeutic benefit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luo, Jia -- Kaplitt, Michael G -- Fitzsimons, Helen L -- Zuzga, David S -- Liu, Yuhong -- Oshinsky, Michael L -- During, Matthew J -- New York, N.Y. -- Science. 2002 Oct 11;298(5592):425-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Functional Genomics and Translational Neuroscience Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12376704" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dependovirus/genetics ; Disease Models, Animal ; Dopamine/metabolism ; Electric Stimulation ; Electrophysiology ; *Genetic Therapy ; Genetic Vectors ; Glutamate Decarboxylase/*genetics/metabolism ; Glutamic Acid/metabolism ; Humans ; Ibotenic Acid/pharmacology ; Isoenzymes/*genetics/metabolism ; Male ; Mesencephalon/metabolism/pathology ; Mice ; Motor Activity/drug effects ; Nerve Degeneration ; Neurons/*metabolism ; Oxidopamine/pharmacology ; Parkinsonian Disorders/metabolism/pathology/*therapy ; Phenotype ; Rats ; Stem Cells/virology ; Substantia Nigra/*metabolism/pathology/physiopathology ; Subthalamic Nucleus/*metabolism/pathology ; Synaptic Transmission ; Transgenes ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-06-23
    Description: To correlate the variable clinical features of oestrogen-receptor-positive breast cancer with somatic alterations, we studied pretreatment tumour biopsies accrued from patients in two studies of neoadjuvant aromatase inhibitor therapy by massively parallel sequencing and analysis. Eighteen significantly mutated genes were identified, including five genes (RUNX1, CBFB, MYH9, MLL3 and SF3B1) previously linked to haematopoietic disorders. Mutant MAP3K1 was associated with luminal A status, low-grade histology and low proliferation rates, whereas mutant TP53 was associated with the opposite pattern. Moreover, mutant GATA3 correlated with suppression of proliferation upon aromatase inhibitor treatment. Pathway analysis demonstrated that mutations in MAP2K4, a MAP3K1 substrate, produced similar perturbations as MAP3K1 loss. Distinct phenotypes in oestrogen-receptor-positive breast cancer are associated with specific patterns of somatic mutations that map into cellular pathways linked to tumour biology, but most recurrent mutations are relatively infrequent. Prospective clinical trials based on these findings will require comprehensive genome sequencing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383766/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383766/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ellis, Matthew J -- Ding, Li -- Shen, Dong -- Luo, Jingqin -- Suman, Vera J -- Wallis, John W -- Van Tine, Brian A -- Hoog, Jeremy -- Goiffon, Reece J -- Goldstein, Theodore C -- Ng, Sam -- Lin, Li -- Crowder, Robert -- Snider, Jacqueline -- Ballman, Karla -- Weber, Jason -- Chen, Ken -- Koboldt, Daniel C -- Kandoth, Cyriac -- Schierding, William S -- McMichael, Joshua F -- Miller, Christopher A -- Lu, Charles -- Harris, Christopher C -- McLellan, Michael D -- Wendl, Michael C -- DeSchryver, Katherine -- Allred, D Craig -- Esserman, Laura -- Unzeitig, Gary -- Margenthaler, Julie -- Babiera, G V -- Marcom, P Kelly -- Guenther, J M -- Leitch, Marilyn -- Hunt, Kelly -- Olson, John -- Tao, Yu -- Maher, Christopher A -- Fulton, Lucinda L -- Fulton, Robert S -- Harrison, Michelle -- Oberkfell, Ben -- Du, Feiyu -- Demeter, Ryan -- Vickery, Tammi L -- Elhammali, Adnan -- Piwnica-Worms, Helen -- McDonald, Sandra -- Watson, Mark -- Dooling, David J -- Ota, David -- Chang, Li-Wei -- Bose, Ron -- Ley, Timothy J -- Piwnica-Worms, David -- Stuart, Joshua M -- Wilson, Richard K -- Mardis, Elaine R -- 3P50 CA68438/CA/NCI NIH HHS/ -- P30 CA091842/CA/NCI NIH HHS/ -- P30 CA091842-01/CA/NCI NIH HHS/ -- P50 CA068438/CA/NCI NIH HHS/ -- P50 CA068438-05/CA/NCI NIH HHS/ -- P50 CA094056/CA/NCI NIH HHS/ -- P50 CA094056-10/CA/NCI NIH HHS/ -- P50 CA94056/CA/NCI NIH HHS/ -- R01 CA095614/CA/NCI NIH HHS/ -- R01 CA095614-01A1/CA/NCI NIH HHS/ -- U01 CA114722/CA/NCI NIH HHS/ -- U01 CA114722-01/CA/NCI NIH HHS/ -- U10 CA076001/CA/NCI NIH HHS/ -- U10 CA076001-13/CA/NCI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003079-04/HG/NHGRI NIH HHS/ -- U54HG003079/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jun 10;486(7403):353-60. doi: 10.1038/nature11143.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Division of Oncology, Washington University, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722193" target="_blank"〉PubMed〈/a〉
    Keywords: Androstadienes/pharmacology/therapeutic use ; Antineoplastic Agents/pharmacology/therapeutic use ; Aromatase/*metabolism ; Aromatase Inhibitors/*therapeutic use ; Breast Neoplasms/*drug therapy/*genetics/metabolism/pathology ; DNA Repair ; Exome/genetics ; Exons/genetics ; Female ; Genetic Variation/genetics ; Genome, Human/*genetics ; Humans ; MAP Kinase Kinase 4/genetics ; MAP Kinase Kinase Kinase 1/genetics ; Mutation/genetics ; Nitriles/pharmacology/therapeutic use ; Receptors, Estrogen/metabolism ; Treatment Outcome ; Triazoles/pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-09-08
    Description: Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell's regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684276/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684276/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Djebali, Sarah -- Davis, Carrie A -- Merkel, Angelika -- Dobin, Alex -- Lassmann, Timo -- Mortazavi, Ali -- Tanzer, Andrea -- Lagarde, Julien -- Lin, Wei -- Schlesinger, Felix -- Xue, Chenghai -- Marinov, Georgi K -- Khatun, Jainab -- Williams, Brian A -- Zaleski, Chris -- Rozowsky, Joel -- Roder, Maik -- Kokocinski, Felix -- Abdelhamid, Rehab F -- Alioto, Tyler -- Antoshechkin, Igor -- Baer, Michael T -- Bar, Nadav S -- Batut, Philippe -- Bell, Kimberly -- Bell, Ian -- Chakrabortty, Sudipto -- Chen, Xian -- Chrast, Jacqueline -- Curado, Joao -- Derrien, Thomas -- Drenkow, Jorg -- Dumais, Erica -- Dumais, Jacqueline -- Duttagupta, Radha -- Falconnet, Emilie -- Fastuca, Meagan -- Fejes-Toth, Kata -- Ferreira, Pedro -- Foissac, Sylvain -- Fullwood, Melissa J -- Gao, Hui -- Gonzalez, David -- Gordon, Assaf -- Gunawardena, Harsha -- Howald, Cedric -- Jha, Sonali -- Johnson, Rory -- Kapranov, Philipp -- King, Brandon -- Kingswood, Colin -- Luo, Oscar J -- Park, Eddie -- Persaud, Kimberly -- Preall, Jonathan B -- Ribeca, Paolo -- Risk, Brian -- Robyr, Daniel -- Sammeth, Michael -- Schaffer, Lorian -- See, Lei-Hoon -- Shahab, Atif -- Skancke, Jorgen -- Suzuki, Ana Maria -- Takahashi, Hazuki -- Tilgner, Hagen -- Trout, Diane -- Walters, Nathalie -- Wang, Huaien -- Wrobel, John -- Yu, Yanbao -- Ruan, Xiaoan -- Hayashizaki, Yoshihide -- Harrow, Jennifer -- Gerstein, Mark -- Hubbard, Tim -- Reymond, Alexandre -- Antonarakis, Stylianos E -- Hannon, Gregory -- Giddings, Morgan C -- Ruan, Yijun -- Wold, Barbara -- Carninci, Piero -- Guigo, Roderic -- Gingeras, Thomas R -- 062023/Wellcome Trust/United Kingdom -- 1RC2HG005591/HG/NHGRI NIH HHS/ -- 249968/European Research Council/International -- P30 CA045508/CA/NCI NIH HHS/ -- R01 HG003700/HG/NHGRI NIH HHS/ -- R01HG003700/HG/NHGRI NIH HHS/ -- R37 GM062534/GM/NIGMS NIH HHS/ -- RC2 HG005591/HG/NHGRI NIH HHS/ -- U01 HG003147/HG/NHGRI NIH HHS/ -- U54 HG004555/HG/NHGRI NIH HHS/ -- U54 HG004557/HG/NHGRI NIH HHS/ -- U54 HG004558/HG/NHGRI NIH HHS/ -- U54 HG004576/HG/NHGRI NIH HHS/ -- U54 HG007004/HG/NHGRI NIH HHS/ -- U54HG004555/HG/NHGRI NIH HHS/ -- U54HG004557/HG/NHGRI NIH HHS/ -- U54HG004558/HG/NHGRI NIH HHS/ -- U54HG004576/HG/NHGRI NIH HHS/ -- England -- Nature. 2012 Sep 6;489(7414):101-8. doi: 10.1038/nature11233.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Genomic Regulation and UPF, Doctor Aiguader 88, Barcelona 08003, Catalonia, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22955620" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Cell Line ; DNA/*genetics ; DNA, Intergenic/genetics ; *Encyclopedias as Topic ; Enhancer Elements, Genetic ; Exons/genetics ; Gene Expression Profiling ; Genes/genetics ; Genome, Human/*genetics ; Genomics ; Humans ; *Molecular Sequence Annotation ; Polyadenylation/genetics ; Protein Isoforms/genetics ; RNA/biosynthesis/genetics ; RNA Editing/genetics ; RNA Splicing/genetics ; Regulatory Sequences, Nucleic Acid/*genetics ; Repetitive Sequences, Nucleic Acid/genetics ; Sequence Analysis, RNA ; Transcription, Genetic/*genetics ; Transcriptome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-07-18
    Description: The surface of the cornea consists of a unique type of non-keratinized epithelial cells arranged in an orderly fashion, and this is essential for vision by maintaining transparency for light transmission. Cornea epithelial cells (CECs) undergo continuous renewal from limbal stem or progenitor cells (LSCs), and deficiency in LSCs or corneal epithelium--which turns cornea into a non-transparent, keratinized skin-like epithelium--causes corneal surface disease that leads to blindness in millions of people worldwide. How LSCs are maintained and differentiated into corneal epithelium in healthy individuals and which key molecular events are defective in patients have been largely unknown. Here we report establishment of an in vitro feeder-cell-free LSC expansion and three-dimensional corneal differentiation protocol in which we found that the transcription factors p63 (tumour protein 63) and PAX6 (paired box protein PAX6) act together to specify LSCs, and WNT7A controls corneal epithelium differentiation through PAX6. Loss of WNT7A or PAX6 induces LSCs into skin-like epithelium, a critical defect tightly linked to common human corneal diseases. Notably, transduction of PAX6 in skin epithelial stem cells is sufficient to convert them to LSC-like cells, and upon transplantation onto eyes in a rabbit corneal injury model, these reprogrammed cells are able to replenish CECs and repair damaged corneal surface. These findings suggest a central role of the WNT7A-PAX6 axis in corneal epithelial cell fate determination, and point to a new strategy for treating corneal surface diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610745/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610745/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ouyang, Hong -- Xue, Yuanchao -- Lin, Ying -- Zhang, Xiaohui -- Xi, Lei -- Patel, Sherrina -- Cai, Huimin -- Luo, Jing -- Zhang, Meixia -- Zhang, Ming -- Yang, Yang -- Li, Gen -- Li, Hairi -- Jiang, Wei -- Yeh, Emily -- Lin, Jonathan -- Pei, Michelle -- Zhu, Jin -- Cao, Guiqun -- Zhang, Liangfang -- Yu, Benjamin -- Chen, Shaochen -- Fu, Xiang-Dong -- Liu, Yizhi -- Zhang, Kang -- GM049369/GM/NIGMS NIH HHS/ -- R01 EY020846/EY/NEI NIH HHS/ -- R01 EY021374/EY/NEI NIH HHS/ -- England -- Nature. 2014 Jul 17;511(7509):358-61. doi: 10.1038/nature13465. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [2] Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing 100730, China (X.Z.); Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, China (Y.Y.). ; Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China [2] Guangzhou KangRui Biological Pharmaceutical Technology Company Ltd., Guangzhou 510005, China. ; Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China. ; 1] Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA. ; 1] Department of Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA [3] Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA. ; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China. ; 1] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [2] Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [3] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China [4] Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA [5] Veterans Administration Healthcare System, San Diego, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25030175" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage ; Corneal Diseases/*metabolism/*pathology ; Disease Models, Animal ; Epithelium, Corneal/*cytology/*metabolism/pathology ; Eye Proteins/genetics/*metabolism ; Homeodomain Proteins/genetics/*metabolism ; *Homeostasis ; Humans ; Limbus Corneae/cytology/metabolism ; Male ; Paired Box Transcription Factors/genetics/*metabolism ; Rabbits ; Repressor Proteins/genetics/*metabolism ; Signal Transduction ; Skin/cytology/metabolism/pathology ; Stem Cell Transplantation ; Stem Cells/cytology/metabolism ; Transcription Factors/metabolism ; Tumor Suppressor Proteins/metabolism ; Wnt Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-05-26
    Description: Cellular responses to DNA damage are mediated by a number of protein kinases, including ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related). The outlines of the signal transduction portion of this pathway are known, but little is known about the physiological scope of the DNA damage response (DDR). We performed a large-scale proteomic analysis of proteins phosphorylated in response to DNA damage on consensus sites recognized by ATM and ATR and identified more than 900 regulated phosphorylation sites encompassing over 700 proteins. Functional analysis of a subset of this data set indicated that this list is highly enriched for proteins involved in the DDR. This set of proteins is highly interconnected, and we identified a large number of protein modules and networks not previously linked to the DDR. This database paints a much broader landscape for the DDR than was previously appreciated and opens new avenues of investigation into the responses to DNA damage in mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsuoka, Shuhei -- Ballif, Bryan A -- Smogorzewska, Agata -- McDonald, E Robert 3rd -- Hurov, Kristen E -- Luo, Ji -- Bakalarski, Corey E -- Zhao, Zhenming -- Solimini, Nicole -- Lerenthal, Yaniv -- Shiloh, Yosef -- Gygi, Steven P -- Elledge, Stephen J -- 1U19A1067751/PHS HHS/ -- New York, N.Y. -- Science. 2007 May 25;316(5828):1160-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Center for Genetics and Genomics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525332" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; Binding Sites ; Cell Cycle/physiology ; Cell Cycle Proteins/*physiology ; Cell Line ; Computational Biology ; Consensus Sequence ; *DNA Damage ; *DNA Repair ; DNA Replication/physiology ; DNA-Binding Proteins/*physiology ; Humans ; Immunoprecipitation ; Isotope Labeling ; Mice ; NIH 3T3 Cells ; Phosphorylation ; Protein-Serine-Threonine Kinases/*physiology ; Proteome/isolation & purification/physiology ; RNA, Small Interfering ; Signal Transduction ; Substrate Specificity ; Tumor Suppressor Proteins/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-02-02
    Description: Retroviral short hairpin RNA (shRNA)-mediated genetic screens in mammalian cells are powerful tools for discovering loss-of-function phenotypes. We describe a highly parallel multiplex methodology for screening large pools of shRNAs using half-hairpin barcodes for microarray deconvolution. We carried out dropout screens for shRNAs that affect cell proliferation and viability in cancer cells and normal cells. We identified many shRNAs to be antiproliferative that target core cellular processes, such as the cell cycle and protein translation, in all cells examined. Moreover, we identified genes that are selectively required for proliferation and survival in different cell lines. Our platform enables rapid and cost-effective genome-wide screens to identify cancer proliferation and survival genes for target discovery. Such efforts are complementary to the Cancer Genome Atlas and provide an alternative functional view of cancer cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981870/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981870/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schlabach, Michael R -- Luo, Ji -- Solimini, Nicole L -- Hu, Guang -- Xu, Qikai -- Li, Mamie Z -- Zhao, Zhenming -- Smogorzewska, Agata -- Sowa, Mathew E -- Ang, Xiaolu L -- Westbrook, Thomas F -- Liang, Anthony C -- Chang, Kenneth -- Hackett, Jennifer A -- Harper, J Wade -- Hannon, Gregory J -- Elledge, Stephen J -- F31 NS054507-01/NS/NINDS NIH HHS/ -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA013106-36/CA/NCI NIH HHS/ -- P01 CA013106-37/CA/NCI NIH HHS/ -- R01 AG011085/AG/NIA NIH HHS/ -- T32CA09216/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Feb 1;319(5863):620-4. doi: 10.1126/science.1149200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Genetics, Center for Genetics and Genomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18239126" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/*genetics/pathology ; Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; Cell Survival/genetics ; Colonic Neoplasms/*genetics/pathology ; Gene Library ; *Genes, Neoplasm ; Genetic Vectors ; Genome, Human ; Genomics/*methods ; Humans ; MicroRNAs ; Oligonucleotide Array Sequence Analysis ; RNA, Small Interfering ; Retroviridae/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...