ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-06-22
    Description: Of the 132 people known to have been infected with H7N9 influenza viruses in China, 37 died, and many were severely ill. Infection seems to have involved contact with infected poultry. We have examined the receptor-binding properties of this H7N9 virus and compared them with those of an avian H7N3 virus. We find that the human H7 virus has significantly higher affinity for alpha-2,6-linked sialic acid analogues ('human receptor') than avian H7 while retaining the strong binding to alpha-2,3-linked sialic acid analogues ('avian receptor') characteristic of avian viruses. The human H7 virus does not, therefore, have the preference for human versus avian receptors characteristic of pandemic viruses. X-ray crystallography of the receptor-binding protein, haemagglutinin (HA), in complex with receptor analogues indicates that both human and avian receptors adopt different conformations when bound to human H7 HA than they do when bound to avian H7 HA. Human receptor bound to human H7 HA exits the binding site in a different direction to that seen in complexes formed by HAs from pandemic viruses and from an aerosol-transmissible H5 mutant. The human-receptor-binding properties of human H7 probably arise from the introduction of two bulky hydrophobic residues by the substitutions Gln226Leu and Gly186Val. The former is shared with the 1957 H2 and 1968 H3 pandemic viruses and with the aerosol-transmissible H5 mutant. We conclude that the human H7 virus has acquired some of the receptor-binding characteristics that are typical of pandemic viruses, but its retained preference for avian receptor may restrict its further evolution towards a virus that could transmit efficiently between humans, perhaps by binding to avian-receptor-rich mucins in the human respiratory tract rather than to cellular receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xiong, Xiaoli -- Martin, Stephen R -- Haire, Lesley F -- Wharton, Stephen A -- Daniels, Rodney S -- Bennett, Michael S -- McCauley, John W -- Collins, Patrick J -- Walker, Philip A -- Skehel, John J -- Gamblin, Steven J -- MC_U117584222/Medical Research Council/United Kingdom -- MC_U117585868/Medical Research Council/United Kingdom -- U117512723/PHS HHS/ -- U117570592/PHS HHS/ -- U117584222/PHS HHS/ -- U117585868/PHS HHS/ -- England -- Nature. 2013 Jul 25;499(7459):496-9. doi: 10.1038/nature12372.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23787694" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Birds/metabolism/virology ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/metabolism ; Humans ; Influenza A Virus, H7N3 Subtype/metabolism ; Influenza A virus/chemistry/isolation & purification/*metabolism ; Influenza, Human/*virology ; Models, Molecular ; Mucins/chemistry/metabolism ; N-Acetylneuraminic Acid/analogs & derivatives/chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Receptors, Virus/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-30
    Description: H10N8 follows H7N9 and H5N1 as the latest in a line of avian influenza viruses that cause serious disease in humans and have become a threat to public health. Since December 2013, three human cases of H10N8 infection have been reported, two of whom are known to have died. To gather evidence relating to the epidemic potential of H10 we have determined the structure of the haemagglutinin of a previously isolated avian H10 virus and we present here results relating especially to its receptor-binding properties, as these are likely to be major determinants of virus transmissibility. Our results show, first, that the H10 virus possesses high avidity for human receptors and second, from the crystal structure of the complex formed by avian H10 haemagglutinin with human receptor, it is clear that the conformation of the bound receptor has characteristics of both the 1918 H1N1 pandemic virus and the human H7 viruses isolated from patients in 2013 (ref. 3). We conclude that avian H10N8 virus has sufficient avidity for human receptors to account for its infection of humans but that its preference for avian receptors should make avian-receptor-rich human airway mucins an effective block to widespread infection. In terms of surveillance, particular attention will be paid to the detection of mutations in the receptor-binding site of the H10 haemagglutinin that decrease its avidity for avian receptor, and could enable it to be more readily transmitted between humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vachieri, Sebastien G -- Xiong, Xiaoli -- Collins, Patrick J -- Walker, Philip A -- Martin, Stephen R -- Haire, Lesley F -- Zhang, Ying -- McCauley, John W -- Gamblin, Steven J -- Skehel, John J -- MC_U117512723/Medical Research Council/United Kingdom -- U117570592/Medical Research Council/United Kingdom -- U117584222/Medical Research Council/United Kingdom -- U117585868/Medical Research Council/United Kingdom -- England -- Nature. 2014 Jul 24;511(7510):475-7. doi: 10.1038/nature13443.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK [2]. ; MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870229" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Birds/*virology ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/metabolism ; Humans ; Influenza A Virus, H1N1 Subtype/chemistry ; Influenza A Virus, H7N9 Subtype/chemistry ; Models, Molecular ; Orthomyxoviridae/*chemistry/*metabolism ; Receptors, Virus/*chemistry/*metabolism ; Zoonoses/transmission/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...