ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2003-03-22
    Description: The Polycomb group (PcG) protein Eed is implicated in regulation of imprinted X-chromosome inactivation in extraembryonic cells but not of random X inactivation in embryonic cells. The Drosophila homolog of the Eed-Ezh2 PcG protein complex achieves gene silencing through methylation of histone H3 on lysine 27 (H3-K27), which suggests a role for H3-K27 methylation in imprinted X inactivation. Here we demonstrate that transient recruitment of the Eed-Ezh2 complex to the inactive X chromosome (Xi) occurs during initiation of X inactivation in both extraembryonic and embryonic cells and is accompanied by H3-K27 methylation. Recruitment of the complex and methylation on the Xi depend on Xist RNA but are independent of its silencing function. Together, our results suggest a role for Eed-Ezh2-mediated H3-K27 methylation during initiation of both imprinted and random X inactivation and demonstrate that H3-K27 methylation is not sufficient for silencing of the Xi.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Plath, Kathrin -- Fang, Jia -- Mlynarczyk-Evans, Susanna K -- Cao, Ru -- Worringer, Kathleen A -- Wang, Hengbin -- de la Cruz, Cecile C -- Otte, Arie P -- Panning, Barbara -- Zhang, Yi -- New York, N.Y. -- Science. 2003 Apr 4;300(5616):131-5. Epub 2003 Mar 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12649488" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/metabolism/*physiology ; Cell Differentiation ; Cell Nucleus/metabolism ; Cells, Cultured ; *Dosage Compensation, Genetic ; Female ; Fluorescent Antibody Technique ; Genomic Imprinting ; HeLa Cells ; Histones/*metabolism ; Humans ; In Situ Hybridization, Fluorescence ; Lysine/metabolism ; Male ; Methylation ; Mice ; Mutation ; Polycomb Repressive Complex 2 ; RNA, Long Noncoding ; RNA, Untranslated/genetics/metabolism ; Repressor Proteins/metabolism ; Stem Cells/metabolism/*physiology ; Transgenes ; Trophoblasts/*physiology ; X Chromosome/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-10-15
    Description: Enhancer of Zeste homolog 2 (EZH2) is a methyltransferase that plays an important role in many biological processes through its ability to trimethylate lysine 27 in histone H3. Here, we show that Akt phosphorylates EZH2 at serine 21 and suppresses its methyltransferase activity by impeding EZH2 binding to histone H3, which results in a decrease of lysine 27 trimethylation and derepression of silenced genes. Our results imply that Akt regulates the methylation activity, through phosphorylation of EZH2, which may contribute to oncogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cha, Tai-Lung -- Zhou, Binhua P -- Xia, Weiya -- Wu, Yadi -- Yang, Cheng-Chieh -- Chen, Chun-Te -- Ping, Bo -- Otte, Arie P -- Hung, Mien-Chie -- P01 099031/PHS HHS/ -- R01 109311/PHS HHS/ -- New York, N.Y. -- Science. 2005 Oct 14;310(5746):306-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Oncology, the University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16224021" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; COS Cells ; Cell Line ; Cell Transformation, Neoplastic ; Cercopithecus aethiops ; Chromones/pharmacology ; DNA-Binding Proteins ; Enzyme Inhibitors/pharmacology ; Gene Expression Regulation ; HeLa Cells ; Histone-Lysine N-Methyltransferase/metabolism ; Histones/*metabolism ; Homeodomain Proteins/genetics ; Humans ; Lysine/*metabolism ; Methylation ; Mice ; Molecular Sequence Data ; Morpholines/pharmacology ; Phosphorylation ; Polycomb Repressive Complex 2 ; Protein Binding ; Protein Methyltransferases ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/*metabolism ; Proteins/*metabolism ; Proto-Oncogene Proteins/antagonists & inhibitors/*metabolism ; Proto-Oncogene Proteins c-akt ; Serine/metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...