ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-12-03
    Description: Linker proteins function as molecular scaffolds to localize enzymes with substrates. In B cells, B cell linker protein (BLNK) links the B cell receptor (BCR)-activated Syk kinase to the phosphoinositide and mitogen-activated kinase pathways. To examine the in vivo role of BLNK, mice deficient in BLNK were generated. B cell development in BLNK-/- mice was blocked at the transition from B220+CD43+ progenitor B to B220+CD43- precursor B cells. Only a small percentage of immunoglobulin M++ (IgM++), but not mature IgMloIgDhi, B cells were detected in the periphery. Hence, BLNK is an essential component of BCR signaling pathways and is required to promote B cell development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pappu, R -- Cheng, A M -- Li, B -- Gong, Q -- Chiu, C -- Griffin, N -- White, M -- Sleckman, B P -- Chan, A C -- AI42787/AI/NIAID NIH HHS/ -- CA71516/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1949-54.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Immunology, Division of Rheumatology, Department of Medicine, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10583957" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Aging ; Animals ; B-Lymphocyte Subsets/cytology/immunology ; B-Lymphocytes/*cytology/immunology/*metabolism ; Bone Marrow Cells/cytology/immunology ; Carrier Proteins/genetics/*physiology ; Cell Count ; Cell Differentiation ; Cell Separation ; Cell Size ; Flow Cytometry ; Gene Targeting ; Hematopoietic Stem Cells/*cytology/metabolism ; Immunoglobulin M/analysis ; Leukopoiesis ; Lymphoid Tissue/cytology/immunology ; Mice ; Mice, Inbred C57BL ; *Phosphoproteins ; Receptors, Antigen, B-Cell/*metabolism ; Second Messenger Systems ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-01-12
    Description: T-bet is a member of the T-box family of transcription factors that appears to regulate lineage commitment in CD4 T helper (TH) lymphocytes in part by activating the hallmark TH1 cytokine, interferon-gamma (IFN-gamma). IFN-gamma is also produced by natural killer (NK) cells and most prominently by CD8 cytotoxic T cells, and is vital for the control of microbial pathogens. Although T-bet is expressed in all these cell types, it is required for control of IFN-gamma production in CD4 and NK cells, but not in CD8 cells. This difference is also apparent in the function of these cell subsets. Thus, the regulation of a single cytokine, IFN-gamma, is controlled by distinct transcriptional mechanisms within the T cell lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Szabo, Susanne J -- Sullivan, Brandon M -- Stemmann, Claudia -- Satoskar, Abhay R -- Sleckman, Barry P -- Glimcher, Laurie H -- New York, N.Y. -- Science. 2002 Jan 11;295(5553):338-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11786644" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD4-Positive T-Lymphocytes/*immunology/physiology ; Cell Differentiation ; Cell Line ; Cell Lineage ; Cytotoxicity, Immunologic ; Gene Targeting ; Immunization ; Immunoglobulin G/biosynthesis ; Interferon-gamma/*biosynthesis ; Interleukin-4/biosynthesis ; Interleukin-5/biosynthesis ; Killer Cells, Natural/immunology/metabolism ; Leishmania major ; Leishmaniasis, Cutaneous/immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; T-Box Domain Proteins ; T-Lymphocytes, Cytotoxic/*immunology ; Th1 Cells/*immunology ; Transcription Factors/deficiency/*genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-10-14
    Description: Susceptibility to Crohn's disease, a complex inflammatory disease involving the small intestine, is controlled by over 30 loci. One Crohn's disease risk allele is in ATG16L1, a gene homologous to the essential yeast autophagy gene ATG16 (ref. 2). It is not known how ATG16L1 or autophagy contributes to intestinal biology or Crohn's disease pathogenesis. To address these questions, we generated and characterized mice that are hypomorphic for ATG16L1 protein expression, and validated conclusions on the basis of studies in these mice by analysing intestinal tissues that we collected from Crohn's disease patients carrying the Crohn's disease risk allele of ATG16L1. Here we show that ATG16L1 is a bona fide autophagy protein. Within the ileal epithelium, both ATG16L1 and a second essential autophagy protein ATG5 are selectively important for the biology of the Paneth cell, a specialized epithelial cell that functions in part by secretion of granule contents containing antimicrobial peptides and other proteins that alter the intestinal environment. ATG16L1- and ATG5-deficient Paneth cells exhibited notable abnormalities in the granule exocytosis pathway. In addition, transcriptional analysis revealed an unexpected gain of function specific to ATG16L1-deficient Paneth cells including increased expression of genes involved in peroxisome proliferator-activated receptor (PPAR) signalling and lipid metabolism, of acute phase reactants and of two adipocytokines, leptin and adiponectin, known to directly influence intestinal injury responses. Importantly, Crohn's disease patients homozygous for the ATG16L1 Crohn's disease risk allele displayed Paneth cell granule abnormalities similar to those observed in autophagy-protein-deficient mice and expressed increased levels of leptin protein. Thus, ATG16L1, and probably the process of autophagy, have a role within the intestinal epithelium of mice and Crohn's disease patients by selective effects on the cell biology and specialized regulatory properties of Paneth cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695978/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695978/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cadwell, Ken -- Liu, John Y -- Brown, Sarah L -- Miyoshi, Hiroyuki -- Loh, Joy -- Lennerz, Jochen K -- Kishi, Chieko -- Kc, Wumesh -- Carrero, Javier A -- Hunt, Steven -- Stone, Christian D -- Brunt, Elizabeth M -- Xavier, Ramnik J -- Sleckman, Barry P -- Li, Ellen -- Mizushima, Noboru -- Stappenbeck, Thaddeus S -- Virgin, Herbert W 4th -- AI062773/AI/NIAID NIH HHS/ -- DK43351/DK/NIDDK NIH HHS/ -- P30 DK040561/DK/NIDDK NIH HHS/ -- P30 DK040561-13/DK/NIDDK NIH HHS/ -- P30 DK043351/DK/NIDDK NIH HHS/ -- P30 DK043351-18/DK/NIDDK NIH HHS/ -- P30 DK052574-09/DK/NIDDK NIH HHS/ -- P30 DK52574/DK/NIDDK NIH HHS/ -- R01 AI062773/AI/NIAID NIH HHS/ -- R01 AI062773-01A1/AI/NIAID NIH HHS/ -- R01 AI062832/AI/NIAID NIH HHS/ -- R01 AI062832-04/AI/NIAID NIH HHS/ -- T32 AR007279/AR/NIAMS NIH HHS/ -- T32 AR007279-30/AR/NIAMS NIH HHS/ -- T32 AR07279/AR/NIAMS NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- U54 AI057160-010005/AI/NIAID NIH HHS/ -- U54 AI057160-05S10018/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Nov 13;456(7219):259-63. doi: 10.1038/nature07416. Epub 2008 Oct 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18849966" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Autophagy/*genetics ; Carrier Proteins/genetics/*metabolism ; Cell Line ; Crohn Disease/genetics/pathology ; Exocytosis/genetics ; Homozygote ; Humans ; Mice ; Mice, Inbred C57BL ; Mutation ; Paneth Cells/*metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...