ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: human calcitonin ; salmon calcitonin ; peptide metabolism ; nasal metabolism ; nasal mucosa ; metabolic pathway ; mass spectrometry ; MALDI-MS ; LSIMS ; LC-MS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. Two calcitonins, i.e. human calcitonin (hCT) and, for comparison, salmon calcitonin (sCT), were chosen as peptide models to investigate nasal mucosal metabolism. Methods. The susceptibility of hCT and sCT to nasal mucosal enzymes was assessed by in-and-out reflection kinetics experiments in an in vitro model based on the use of freshly excised bovine nasal mucosa, with the mucosal surface of the mucosa facing the peptide solution. The kinetics of CT degradation in the bulk solution was monitored by HPLC. Peptide sequences of the main nasal metabolites of hCT were analyzed by using both liquid secondary ionization mass spectrometry (LSIMS), following HPLC fractionation of the metabolites, and matrix-assisted laser desorption ionization mass (MALDI) spectrometry. For sCT, the molecular weights of two major metabolites were determined by LC-MS with electrospray ionization. Results. Both CTs were readily metabolized by nasal mucosal enzymes. In the concentration range studied metabolic rates were higher with hCT than with sCT. Presence of endopeptidase activities in the nasal mucosa was crucial, cleaving both calcitonins in the central domain of the molecules. Conclusions. Typically, initial metabolic cleavage of hCT in nasal mucosa is due to both chymotryptic- and tryptic-like endopeptidases. The subsequent metabolic break-down follows the sequential pattern of aminopeptidase activity. Tryptic endopeptidase activity is characteristic of nasal sCT cleavage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0173-0835
    Keywords: Proteome ; Gene knockout ; Fingerprinting ; Sulfate starvation ; Mass spectrometry ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Recently the determination of the genome sequences of three procaryotes (Haemophilus influenzae, Methanococcus jannaschii and Mycoplasma genitalium) as well as the first eucaryotic genome (Saccharomyces cerevisiae) were completed. Between 40-60% of the genes were found to code for proteins to which no function could be assigned. We describe an approach which combines proteome analysis (mapping of expressed proteins isolated by two-dimensional polyacrylamide gel electrophoresis to the genome) with genetic manipulations to study the complex pattern of protein regulation occurring in Escherichia coli in response to sulfate starvation. We have previously described the upregulation of eight spots on two-dimensional (2-D) gels in response to sulfate starvation and the assignment of six of these to entries in the E. coli genome sequence (Quadroni et al., Eur. J. Biochem. 1996, 239, 773-781). Here we describe the identification of the remaining two proteins which are encoded in a sulfate-controlled operon in the 21.5′ region of the E. coli genome. Upregulated protein spots were cut from multiple 2-D gels collected and run on a modified funnel gel to concentrate the proteins and remove the sodium dodecyl sulfate before digestion. The peptide masses obtained from the digests were used to search the SwissProt database or a six-frame translation of the EMBL DNA database using a peptide mass fingerprinting algorithm. A digest can be reanalyzed after deuterium exchange to obtain a second, orthogonal data set to increase the confidence level of protein identification. The digests of the remaining unidentified proteins were used for peptide fragment generation using either post-source decay in a matrix-assisted laser desorption ionization (MALDI) time-of-flight mass spectrometer or collision-induced dissociation (CID) coupled mass specrometry (MS/MS) with triple stage quadrupole or ion trap mass spectrometers. The spectra were used as peptide fragment fingerprints to search the SwissProt and EMBL databases.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...