ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997-12-31
    Description: Many of the particles currently suspended in the martian atmosphere are magnetic, with an average saturation magnetization of about 4 A. m2/kg (amperes times square meters per kilogram). The particles appear to consist of claylike aggregates stained or cemented with ferric oxide (Fe2O3); at least some of the stain and cement is probably maghemite (gamma-Fe2O3). The presence of the gamma phase would imply that Fe2+ ions leached from the bedrock, passing through a state as free Fe2+ ions dissolved in liquid water. These particles could be a freeze-dried precipitate from ground water poured out on the surface. An alternative is that the magnetic particles are titanomagnetite occurring in palagonite and inherited directly from a basaltic precursor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hviid, S F -- Madsen, M B -- Gunnlaugsson, H P -- Goetz, W -- Knudsen, J M -- Hargraves, R B -- Smith, P -- Britt, D -- Dinesen, A R -- Mogensen, C T -- Olsen, M -- Pedersen, C T -- Vistisen, L -- New York, N.Y. -- Science. 1997 Dec 5;278(5344):1768-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Oersted Laboratory, Niels Bohr Institute for Astronomy, Physics, and Geophysics, University of Copenhagen, Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9388172" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Extraterrestrial Environment ; Ferric Compounds ; Ferrosoferric Oxide ; Iron ; *Magnetics ; *Mars ; Minerals ; Oxides ; Silicates ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-08-07
    Description: The magnetic properties experiments are designed to help identify the magnetic minerals in the dust and rocks on Mars-and to determine whether liquid water was involved in the formation and alteration of these magnetic minerals. Almost all of the dust particles suspended in the martian atmosphere must contain ferrimagnetic minerals (such as maghemite or magnetite) in an amount of approximately 2% by weight. The most magnetic fraction of the dust appears darker than the average dust. Magnetite was detected in the first two rocks ground by Spirit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bertelsen, P -- Goetz, W -- Madsen, M B -- Kinch, K M -- Hviid, S F -- Knudsen, J M -- Gunnlaugsson, H P -- Merrison, J -- Nornberg, P -- Squyres, S W -- Bell, J F 3rd -- Herkenhoff, K E -- Gorevan, S -- Yen, A S -- Myrick, T -- Klingelhofer, G -- Rieder, R -- Gellert, R -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):827-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Planetary Science, Danish Space Research Institute and Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen, Denmark. preben@fys.ku.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297664" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Extraterrestrial Environment ; Ferrosoferric Oxide ; Geologic Sediments ; Iron ; *Magnetics ; *Mars ; *Minerals ; Oxides ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...