ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-19
    Description: Naturally occurring variations of Polycomb repressive complex 1 (PRC1) comprise a core assembly of Polycomb group proteins and additional factors that include, surprisingly, autism susceptibility candidate 2 (AUTS2). Although AUTS2 is often disrupted in patients with neuronal disorders, the mechanism underlying the pathogenesis is unclear. We investigated the role of AUTS2 as part of a previously identified PRC1 complex (PRC1-AUTS2), and in the context of neurodevelopment. In contrast to the canonical role of PRC1 in gene repression, PRC1-AUTS2 activates transcription. Biochemical studies demonstrate that the CK2 component of PRC1-AUTS2 neutralizes PRC1 repressive activity, whereas AUTS2-mediated recruitment of P300 leads to gene activation. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) demonstrated that AUTS2 regulates neuronal gene expression through promoter association. Conditional targeting of Auts2 in the mouse central nervous system (CNS) leads to various developmental defects. These findings reveal a natural means of subverting PRC1 activity, linking key epigenetic modulators with neuronal functions and diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323097/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323097/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Zhonghua -- Lee, Pedro -- Stafford, James M -- von Schimmelmann, Melanie -- Schaefer, Anne -- Reinberg, Danny -- 1DP2MH100012-01/DP/NCCDPHP CDC HHS/ -- 1F32GM105275/GM/NIGMS NIH HHS/ -- 5T32CA160002/CA/NCI NIH HHS/ -- DP2 MH100012/MH/NIMH NIH HHS/ -- F32AA022842/AA/NIAAA NIH HHS/ -- GM-64844/GM/NIGMS NIH HHS/ -- P30 CA016087/CA/NCI NIH HHS/ -- R01 GM064844/GM/NIGMS NIH HHS/ -- T32 CA160002/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 18;516(7531):349-54. doi: 10.1038/nature13921.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, New York University Langone School of Medicine, Department of Biochemistry and Molecular Pharmacology, New York, New York 10016, USA. ; Friedman Brain Institute, Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25519132" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/physiology ; Cell Cycle Proteins/genetics/*metabolism ; Central Nervous System/*metabolism ; Female ; Gene Expression Profiling ; Gene Expression Regulation/*genetics ; Gene Knockout Techniques ; Genotype ; HEK293 Cells ; Histones/metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; Proteins/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-08-24
    Description: Antibiotics administered in low doses have been widely used as growth promoters in the agricultural industry since the 1950s, yet the mechanisms for this effect are unclear. Because antimicrobial agents of different classes and varying activity are effective across several vertebrate species, we proposed that such subtherapeutic administration alters the population structure of the gut microbiome as well as its metabolic capabilities. We generated a model of adiposity by giving subtherapeutic antibiotic therapy to young mice and evaluated changes in the composition and capabilities of the gut microbiome. Administration of subtherapeutic antibiotic therapy increased adiposity in young mice and increased hormone levels related to metabolism. We observed substantial taxonomic changes in the microbiome, changes in copies of key genes involved in the metabolism of carbohydrates to short-chain fatty acids, increases in colonic short-chain fatty acid levels, and alterations in the regulation of hepatic metabolism of lipids and cholesterol. In this model, we demonstrate the alteration of early-life murine metabolic homeostasis through antibiotic manipulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553221/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553221/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cho, Ilseung -- Yamanishi, Shingo -- Cox, Laura -- Methe, Barbara A -- Zavadil, Jiri -- Li, Kelvin -- Gao, Zhan -- Mahana, Douglas -- Raju, Kartik -- Teitler, Isabel -- Li, Huilin -- Alekseyenko, Alexander V -- Blaser, Martin J -- 1UL1-RR029893/RR/NCRR NIH HHS/ -- R01 DK090989/DK/NIDDK NIH HHS/ -- T-R01-DK090989/DK/NIDDK NIH HHS/ -- UL1 RR029893/RR/NCRR NIH HHS/ -- UL1 TR000038/TR/NCATS NIH HHS/ -- UL1-TR000038/TR/NCATS NIH HHS/ -- England -- Nature. 2012 Aug 30;488(7413):621-6. doi: 10.1038/nature11400.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22914093" target="_blank"〉PubMed〈/a〉
    Keywords: Adiposity/*drug effects/physiology ; Age Factors ; Animals ; Anti-Bacterial Agents/*administration & dosage/*pharmacology ; Body Composition/drug effects ; Body Weight/drug effects ; Bone Density/drug effects ; Bone Development/drug effects ; Cecum/drug effects/metabolism ; Cholesterol/metabolism ; Colon/*drug effects/*microbiology ; Fatty Acids, Volatile/metabolism ; Feces/microbiology ; Female ; Gastric Inhibitory Polypeptide/blood/metabolism ; Lipid Metabolism/drug effects ; Liver/drug effects/metabolism ; Male ; Metagenome/*drug effects ; Mice ; Mice, Inbred C57BL ; Polymerase Chain Reaction ; Weaning
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-29
    Description: Oesophageal cancer is one of the most aggressive cancers and is the sixth leading cause of cancer death worldwide. Approximately 70% of global oesophageal cancer cases occur in China, with oesophageal squamous cell carcinoma (ESCC) being the histopathological form in the vast majority of cases (〉90%). Currently, there are limited clinical approaches for the early diagnosis and treatment of ESCC, resulting in a 10% five-year survival rate for patients. However, the full repertoire of genomic events leading to the pathogenesis of ESCC remains unclear. Here we describe a comprehensive genomic analysis of 158 ESCC cases, as part of the International Cancer Genome Consortium research project. We conducted whole-genome sequencing in 17 ESCC cases and whole-exome sequencing in 71 cases, of which 53 cases, plus an additional 70 ESCC cases not used in the whole-genome and whole-exome sequencing, were subjected to array comparative genomic hybridization analysis. We identified eight significantly mutated genes, of which six are well known tumour-associated genes (TP53, RB1, CDKN2A, PIK3CA, NOTCH1, NFE2L2), and two have not previously been described in ESCC (ADAM29 and FAM135B). Notably, FAM135B is identified as a novel cancer-implicated gene as assayed for its ability to promote malignancy of ESCC cells. Additionally, MIR548K, a microRNA encoded in the amplified 11q13.3-13.4 region, is characterized as a novel oncogene, and functional assays demonstrate that MIR548K enhances malignant phenotypes of ESCC cells. Moreover, we have found that several important histone regulator genes (MLL2 (also called KMT2D), ASH1L, MLL3 (KMT2C), SETD1B, CREBBP and EP300) are frequently altered in ESCC. Pathway assessment reveals that somatic aberrations are mainly involved in the Wnt, cell cycle and Notch pathways. Genomic analyses suggest that ESCC and head and neck squamous cell carcinoma share some common pathogenic mechanisms, and ESCC development is associated with alcohol drinking. This study has explored novel biological markers and tumorigenic pathways that would greatly improve therapeutic strategies for ESCC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Yongmei -- Li, Lin -- Ou, Yunwei -- Gao, Zhibo -- Li, Enmin -- Li, Xiangchun -- Zhang, Weimin -- Wang, Jiaqian -- Xu, Liyan -- Zhou, Yong -- Ma, Xiaojuan -- Liu, Lingyan -- Zhao, Zitong -- Huang, Xuanlin -- Fan, Jing -- Dong, Lijia -- Chen, Gang -- Ma, Liying -- Yang, Jie -- Chen, Longyun -- He, Minghui -- Li, Miao -- Zhuang, Xuehan -- Huang, Kai -- Qiu, Kunlong -- Yin, Guangliang -- Guo, Guangwu -- Feng, Qiang -- Chen, Peishan -- Wu, Zhiyong -- Wu, Jianyi -- Ma, Ling -- Zhao, Jinyang -- Luo, Longhai -- Fu, Ming -- Xu, Bainan -- Chen, Bo -- Li, Yingrui -- Tong, Tong -- Wang, Mingrong -- Liu, Zhihua -- Lin, Dongxin -- Zhang, Xiuqing -- Yang, Huanming -- Wang, Jun -- Zhan, Qimin -- England -- Nature. 2014 May 1;509(7498):91-5. doi: 10.1038/nature13176. Epub 2014 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China [2]. ; 1] BGI-Shenzhen, Shenzhen 518083, Guangdong 518083, China [2]. ; 1] State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China [2] Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China [3]. ; 1] Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China [2]. ; State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. ; BGI-Shenzhen, Shenzhen 518083, Guangdong 518083, China. ; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China. ; Department of Tumor Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, Guangdong, China. ; Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China. ; Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670651" target="_blank"〉PubMed〈/a〉
    Keywords: Alcohol Drinking/adverse effects ; Biomarkers, Tumor/genetics ; Carcinoma, Squamous Cell/*genetics/pathology ; Cell Cycle/genetics ; Chromosomes, Human, Pair 11/genetics ; Comparative Genomic Hybridization ; DNA Copy Number Variations/genetics ; Esophageal Neoplasms/*genetics/pathology ; Exome/genetics ; Female ; Genome, Human/*genetics ; Genomics ; Histones/metabolism ; Humans ; Male ; MicroRNAs/genetics ; Mutation/*genetics ; Oncogenes/genetics ; Phenotype ; Receptors, Notch/genetics ; Risk Factors ; Wnt Signaling Pathway/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-10-12
    Description: Myocardial cell death is initiated by excessive mitochondrial Ca(2+) entry causing Ca(2+) overload, mitochondrial permeability transition pore (mPTP) opening and dissipation of the mitochondrial inner membrane potential (DeltaPsim). However, the signalling pathways that control mitochondrial Ca(2+) entry through the inner membrane mitochondrial Ca(2+) uniporter (MCU) are not known. The multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is activated in ischaemia reperfusion, myocardial infarction and neurohumoral injury, common causes of myocardial death and heart failure; these findings suggest that CaMKII could couple disease stress to mitochondrial injury. Here we show that CaMKII promotes mPTP opening and myocardial death by increasing MCU current (I(MCU)). Mitochondrial-targeted CaMKII inhibitory protein or cyclosporin A, an mPTP antagonist with clinical efficacy in ischaemia reperfusion injury, equivalently prevent mPTP opening, DeltaPsim deterioration and diminish mitochondrial disruption and programmed cell death in response to ischaemia reperfusion injury. Mice with myocardial and mitochondrial-targeted CaMKII inhibition have reduced I(MCU) and are resistant to ischaemia reperfusion injury, myocardial infarction and neurohumoral injury, suggesting that pathological actions of CaMKII are substantially mediated by increasing I(MCU). Our findings identify CaMKII activity as a central mechanism for mitochondrial Ca(2+) entry in myocardial cell death, and indicate that mitochondrial-targeted CaMKII inhibition could prevent or reduce myocardial death and heart failure in response to common experimental forms of pathophysiological stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471377/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471377/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joiner, Mei-Ling A -- Koval, Olha M -- Li, Jingdong -- He, B Julie -- Allamargot, Chantal -- Gao, Zhan -- Luczak, Elizabeth D -- Hall, Duane D -- Fink, Brian D -- Chen, Biyi -- Yang, Jinying -- Moore, Steven A -- Scholz, Thomas D -- Strack, Stefan -- Mohler, Peter J -- Sivitz, William I -- Song, Long-Sheng -- Anderson, Mark E -- R01 HL062494/HL/NHLBI NIH HHS/ -- R01 HL070250/HL/NHLBI NIH HHS/ -- R01 HL079031/HL/NHLBI NIH HHS/ -- R01 HL083422/HL/NHLBI NIH HHS/ -- R01 HL084583/HL/NHLBI NIH HHS/ -- R01 HL090905/HL/NHLBI NIH HHS/ -- R01 HL113001/HL/NHLBI NIH HHS/ -- R01 HL62494/HL/NHLBI NIH HHS/ -- R01 HL70250/HL/NHLBI NIH HHS/ -- R56 NS056244/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Nov 8;491(7423):269-73. doi: 10.1038/nature11444. Epub 2012 Oct 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine and Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA. mei-ling-joiner@uiowa.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23051746" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/drug effects ; Calcium/*metabolism/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & ; inhibitors/chemistry/*metabolism ; Cyclosporine/pharmacology ; Female ; Heart/drug effects/physiopathology ; Heart Failure/drug therapy/prevention & control ; Membrane Potential, Mitochondrial/drug effects/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mitochondria, Heart/enzymology/*metabolism/*pathology ; Mitochondrial Membrane Transport Proteins/metabolism ; Myocardial Infarction/drug therapy/prevention & control ; Myocardium/*enzymology/metabolism/*pathology ; Reperfusion Injury/enzymology/metabolism/pathology/prevention & control ; Serine/metabolism ; *Stress, Physiological/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joiner, Mei-Ling A -- Koval, Olha M -- Li, Jingdong -- He, B Julie -- Allamargot, Chantal -- Gao, Zhan -- Luczak, Elizabeth D -- Hall, Duane D -- Fink, Brian D -- Chen, Biyi -- Yang, Jinying -- Moore, Steven A -- Scholz, Thomas D -- Strack, Stefan -- Mohler, Peter J -- Sivitz, William I -- Song, Long-Sheng -- Anderson, Mark E -- England -- Nature. 2014 Sep 25;513(7519):E3. doi: 10.1038/nature13627.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Internal Medicine and Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA [2] Department of Molecular Physiology &Biophysics, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, USA (M.A.J.); The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA (J.L., P.J.M.); Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA (B.J.H.); Johns Hopkins University School of Medicine, 1830 East Monument Street, 9th Floor, Suite 9026, Baltimore, Maryland 21287, USA (E.D.L., M.E.A.). ; Department of Internal Medicine and Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA. ; University of Iowa Central Microscopy Research Facility, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA. ; Iowa City Veterans Affairs Medical, Iowa City, Iowa 52246, USA. ; 1] Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA [2] Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA. ; Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA. ; Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA. ; 1] Department of Internal Medicine and Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA [2] Iowa City Veterans Affairs Medical, Iowa City, Iowa 52246, USA. ; 1] Department of Internal Medicine and Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA [2] Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA [3] Department of Molecular Physiology &Biophysics, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, USA (M.A.J.); The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA (J.L., P.J.M.); Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA (B.J.H.); Johns Hopkins University School of Medicine, 1830 East Monument Street, 9th Floor, Suite 9026, Baltimore, Maryland 21287, USA (E.D.L., M.E.A.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25254481" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/*metabolism ; Female ; Mitochondria, Heart/*metabolism/*pathology ; Myocardium/*enzymology/*pathology ; *Stress, Physiological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...