ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-10-22
    Description: Aberrant expression of microRNAs (miRNAs) and the enzymes that control their processing have been reported in multiple biological processes including primary and metastatic tumours, but the mechanisms governing this are not clearly understood. Here we show that TAp63, a p53 family member, suppresses tumorigenesis and metastasis, and coordinately regulates Dicer and miR-130b to suppress metastasis. Metastatic mouse and human tumours deficient in TAp63 express Dicer at very low levels, and we found that modulation of expression of Dicer and miR-130b markedly affected the metastatic potential of cells lacking TAp63. TAp63 binds to and transactivates the Dicer promoter, demonstrating direct transcriptional regulation of Dicer by TAp63. These data provide a novel understanding of the roles of TAp63 in tumour and metastasis suppression through the coordinate transcriptional regulation of Dicer and miR-130b and may have implications for the many processes regulated by miRNAs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055799/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055799/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, Xiaohua -- Chakravarti, Deepavali -- Cho, Min Soon -- Liu, Lingzhi -- Gi, Young Jin -- Lin, Yu-Li -- Leung, Marco L -- El-Naggar, Adel -- Creighton, Chad J -- Suraokar, Milind B -- Wistuba, Ignacio -- Flores, Elsa R -- 01DE019765/DE/NIDCR NIH HHS/ -- CA16672/CA/NCI NIH HHS/ -- P30 CA016672-27/CA/NCI NIH HHS/ -- P50 CA070907/CA/NCI NIH HHS/ -- P50 CA070907-10/CA/NCI NIH HHS/ -- P50 CA091846/CA/NCI NIH HHS/ -- P50 CA091846-10/CA/NCI NIH HHS/ -- P50CA070907/CA/NCI NIH HHS/ -- P50CA091846/CA/NCI NIH HHS/ -- U01 DE019765/DE/NIDCR NIH HHS/ -- U01 DE019765-03/DE/NIDCR NIH HHS/ -- England -- Nature. 2010 Oct 21;467(7318):986-90. doi: 10.1038/nature09459.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20962848" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Aging ; Cell Line ; Cell Line, Tumor ; DEAD-box RNA Helicases/biosynthesis/deficiency/genetics/*metabolism ; Endoribonucleases/genetics/*metabolism ; Female ; *Gene Expression Regulation, Neoplastic ; Genes, Tumor Suppressor/physiology ; Genomic Instability ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; MicroRNAs/*biosynthesis/genetics/metabolism ; Neoplasm Metastasis/*genetics ; Neoplasms/genetics/pathology/secretion ; Phosphoproteins/deficiency/genetics/*metabolism ; Promoter Regions, Genetic/genetics ; Ribonuclease III/biosynthesis/deficiency/genetics/*metabolism ; Trans-Activators/deficiency/genetics/*metabolism ; Transcription Factors ; Transcriptional Activation ; Tumor Suppressor Proteins/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-12-08
    Description: Although the nematode Caenorhabditis elegans produces self-fertile hermaphrodites, it descended from a male/female species, so hermaphroditism provides a model for the origin of novel traits. In the related species C. remanei, which has only male and female sexes, lowering the activity of tra-2 by RNA interference created XX animals that made spermatids as well as oocytes, but their spermatids could not activate without the addition of male seminal fluid. However, by lowering the expression of both tra-2 and swm-1, a gene that regulates sperm activation in C. elegans, we produced XX animals with active sperm that were self-fertile. Thus, the evolution of hermaphroditism in Caenorhabditis probably required two steps: a mutation in the sex-determination pathway that caused XX spermatogenesis and a mutation that allowed these spermatids to self-activate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldi, Chris -- Cho, Soochin -- Ellis, Ronald E -- New York, N.Y. -- Science. 2009 Nov 13;326(5955):1002-5. doi: 10.1126/science.1176013.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965511" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; *Biological Evolution ; Caenorhabditis/anatomy & histology/classification/*genetics/*physiology ; Caenorhabditis elegans/anatomy & histology/classification/*genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/physiology ; Crosses, Genetic ; Disorders of Sex Development/genetics ; Female ; Genes, Helminth ; Germ Cells/physiology ; Male ; Membrane Proteins/genetics/physiology ; Molecular Sequence Data ; *Mutation ; Oogenesis ; Ovulation ; Phylogeny ; Reproduction ; Selection, Genetic ; Sex Determination Processes ; Spermatids/physiology ; Spermatogenesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-17
    Description: Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390078/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390078/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Guojie -- Li, Cai -- Li, Qiye -- Li, Bo -- Larkin, Denis M -- Lee, Chul -- Storz, Jay F -- Antunes, Agostinho -- Greenwold, Matthew J -- Meredith, Robert W -- Odeen, Anders -- Cui, Jie -- Zhou, Qi -- Xu, Luohao -- Pan, Hailin -- Wang, Zongji -- Jin, Lijun -- Zhang, Pei -- Hu, Haofu -- Yang, Wei -- Hu, Jiang -- Xiao, Jin -- Yang, Zhikai -- Liu, Yang -- Xie, Qiaolin -- Yu, Hao -- Lian, Jinmin -- Wen, Ping -- Zhang, Fang -- Li, Hui -- Zeng, Yongli -- Xiong, Zijun -- Liu, Shiping -- Zhou, Long -- Huang, Zhiyong -- An, Na -- Wang, Jie -- Zheng, Qiumei -- Xiong, Yingqi -- Wang, Guangbiao -- Wang, Bo -- Wang, Jingjing -- Fan, Yu -- da Fonseca, Rute R -- Alfaro-Nunez, Alonzo -- Schubert, Mikkel -- Orlando, Ludovic -- Mourier, Tobias -- Howard, Jason T -- Ganapathy, Ganeshkumar -- Pfenning, Andreas -- Whitney, Osceola -- Rivas, Miriam V -- Hara, Erina -- Smith, Julia -- Farre, Marta -- Narayan, Jitendra -- Slavov, Gancho -- Romanov, Michael N -- Borges, Rui -- Machado, Joao Paulo -- Khan, Imran -- Springer, Mark S -- Gatesy, John -- Hoffmann, Federico G -- Opazo, Juan C -- Hastad, Olle -- Sawyer, Roger H -- Kim, Heebal -- Kim, Kyu-Won -- Kim, Hyeon Jeong -- Cho, Seoae -- Li, Ning -- Huang, Yinhua -- Bruford, Michael W -- Zhan, Xiangjiang -- Dixon, Andrew -- Bertelsen, Mads F -- Derryberry, Elizabeth -- Warren, Wesley -- Wilson, Richard K -- Li, Shengbin -- Ray, David A -- Green, Richard E -- O'Brien, Stephen J -- Griffin, Darren -- Johnson, Warren E -- Haussler, David -- Ryder, Oliver A -- Willerslev, Eske -- Graves, Gary R -- Alstrom, Per -- Fjeldsa, Jon -- Mindell, David P -- Edwards, Scott V -- Braun, Edward L -- Rahbek, Carsten -- Burt, David W -- Houde, Peter -- Zhang, Yong -- Yang, Huanming -- Wang, Jian -- Avian Genome Consortium -- Jarvis, Erich D -- Gilbert, M Thomas P -- Wang, Jun -- DP1 OD000448/OD/NIH HHS/ -- DP1OD000448/OD/NIH HHS/ -- R01 HL087216/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1311-20. doi: 10.1126/science.1251385. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. ; Royal Veterinary College, University of London, London, UK. ; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea. ; School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA. ; Centro de Investigacion en Ciencias del Mar y Limnologia (CIMAR)/Centro Interdisciplinar de Investigacao Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Departamento de Biologia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal. ; Department of Biological Sciences, University of South Carolina, Columbia, SC, USA. ; Department of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA. ; Department of Animal Ecology, Uppsala University, Norbyvagen 18D, S-752 36 Uppsala, Sweden. ; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia. Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore. ; Department of Integrative Biology University of California, Berkeley, CA 94720, USA. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. College of Life Sciences, Wuhan University, Wuhan 430072, China. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. BGI Education Center,University of Chinese Academy of Sciences,Shenzhen, 518083, China. ; Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. ; Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK. ; School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK. ; Centro de Investigacion en Ciencias del Mar y Limnologia (CIMAR)/Centro Interdisciplinar de Investigacao Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Instituto de Ciencias Biomedicas Abel Salazar (ICBAS), Universidade do Porto, Portugal. ; Department of Biology, University of California Riverside, Riverside, CA 92521, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. ; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. ; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Post Office Box 7011, S-750 07, Uppsala, Sweden. ; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea. Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea. ; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. ; Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea. ; State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. ; State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. College of Animal Science and Technology, China Agricultural University, Beijing 100094, China. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK. Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 China. ; International Wildlife Consultants, Carmarthen SA33 5YL, Wales, UK. ; Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 38, DK-2000 Frederiksberg, Denmark. ; Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA. Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA. ; The Genome Institute at Washington University, St. Louis, MO 63108, USA. ; College of Medicine and Forensics, Xi'an Jiaotong University, Xi'an, 710061, China. ; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. ; Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. ; Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia. Nova Southeastern University Oceanographic Center 8000 N Ocean Drive, Dania, FL 33004, USA. ; Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA. ; Genetics Division, San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, USA. ; Department of Vertebrate Zoology, MRC-116, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, Washington, DC 20013-7012, USA. Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. ; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China. Swedish Species Information Centre, Swedish University of Agricultural Sciences, Box 7007, SE-750 07 Uppsala, Sweden. ; Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. ; Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA. ; Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA. ; Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA. ; Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Imperial College London, Grand Challenges in Ecosystems and the Environment Initiative, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK. ; Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The Roslin Institute Building, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK. ; Department of Biology, New Mexico State University, Box 30001 MSC 3AF, Las Cruces, NM 88003, USA. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. ; Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia, 6102, Australia. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Department of Medicine, University of Hong Kong, Hong Kong. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504712" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Biodiversity ; *Biological Evolution ; Birds/classification/*genetics/physiology ; Conserved Sequence ; Diet ; *Evolution, Molecular ; Female ; Flight, Animal ; Genes ; Genetic Variation ; *Genome ; Genomics ; Male ; Molecular Sequence Annotation ; Phylogeny ; Reproduction/genetics ; Selection, Genetic ; Sequence Analysis, DNA ; Synteny ; Vision, Ocular/genetics ; Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-06-16
    Description: Autism spectrum disorder (ASD) is a group of conditions characterized by impaired social interaction and communication, and restricted and repetitive behaviours. ASD is a highly heritable disorder involving various genetic determinants. Shank2 (also known as ProSAP1) is a multi-domain scaffolding protein and signalling adaptor enriched at excitatory neuronal synapses, and mutations in the human SHANK2 gene have recently been associated with ASD and intellectual disability. Although ASD-associated genes are being increasingly identified and studied using various approaches, including mouse genetics, further efforts are required to delineate important causal mechanisms with the potential for therapeutic application. Here we show that Shank2-mutant (Shank2(-/-)) mice carrying a mutation identical to the ASD-associated microdeletion in the human SHANK2 gene exhibit ASD-like behaviours including reduced social interaction, reduced social communication by ultrasonic vocalizations, and repetitive jumping. These mice show a marked decrease in NMDA (N-methyl-D-aspartate) glutamate receptor (NMDAR) function. Direct stimulation of NMDARs with D-cycloserine, a partial agonist of NMDARs, normalizes NMDAR function and improves social interaction in Shank2(-/-) mice. Furthermore, treatment of Shank2(-/-) mice with a positive allosteric modulator of metabotropic glutamate receptor 5 (mGluR5), which enhances NMDAR function via mGluR5 activation, also normalizes NMDAR function and markedly enhances social interaction. These results suggest that reduced NMDAR function may contribute to the development of ASD-like phenotypes in Shank2(-/-) mice, and mGluR modulation of NMDARs offers a potential strategy to treat ASD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Won, Hyejung -- Lee, Hye-Ryeon -- Gee, Heon Yung -- Mah, Won -- Kim, Jae-Ick -- Lee, Jiseok -- Ha, Seungmin -- Chung, Changuk -- Jung, Eun Suk -- Cho, Yi Sul -- Park, Sae-Geun -- Lee, Jung-Soo -- Lee, Kyungmin -- Kim, Daesoo -- Bae, Yong Chul -- Kaang, Bong-Kiun -- Lee, Min Goo -- Kim, Eunjoon -- England -- Nature. 2012 Jun 13;486(7402):261-5. doi: 10.1038/nature11208.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, KAIST, Daejeon 305-701, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22699620" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*genetics ; Animals ; Antimetabolites/pharmacology ; *Autistic Disorder/genetics/metabolism ; Behavior, Animal/*drug effects/physiology ; Benzamides/*pharmacology ; Cycloserine/*pharmacology ; Disease Models, Animal ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins/*genetics ; Pyrazoles/*pharmacology ; Receptors, N-Methyl-D-Aspartate/*agonists/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-10-26
    Description: The induced pluripotent stem (iPS) cell field holds promise for in vitro disease modeling. However, identifying innate cellular pathologies, particularly for age-related neurodegenerative diseases, has been challenging. Here, we exploited mutation correction of iPS cells and conserved proteotoxic mechanisms from yeast to humans to discover and reverse phenotypic responses to alpha-synuclein (alphasyn), a key protein involved in Parkinson's disease (PD). We generated cortical neurons from iPS cells of patients harboring alphasyn mutations, who are at high risk of developing PD dementia. Genetic modifiers from unbiased screens in a yeast model of alphasyn toxicity led to identification of early pathogenic phenotypes in patient neurons. These included nitrosative stress, accumulation of endoplasmic reticulum (ER)-associated degradation substrates, and ER stress. A small molecule identified in a yeast screen (NAB2), and the ubiquitin ligase Nedd4 it affects, reversed pathologic phenotypes in these neurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022187/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022187/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Chee Yeun -- Khurana, Vikram -- Auluck, Pavan K -- Tardiff, Daniel F -- Mazzulli, Joseph R -- Soldner, Frank -- Baru, Valeriya -- Lou, Yali -- Freyzon, Yelena -- Cho, Sukhee -- Mungenast, Alison E -- Muffat, Julien -- Mitalipova, Maisam -- Pluth, Michael D -- Jui, Nathan T -- Schule, Birgitt -- Lippard, Stephen J -- Tsai, Li-Huei -- Krainc, Dimitri -- Buchwald, Stephen L -- Jaenisch, Rudolf -- Lindquist, Susan -- 5 R01CA084198/CA/NCI NIH HHS/ -- K01 AG038546/AG/NIA NIH HHS/ -- P50 AG005134/AG/NIA NIH HHS/ -- R01 CA084198/CA/NCI NIH HHS/ -- R01 GM058160/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):983-7. doi: 10.1126/science.1245296. Epub 2013 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24158904" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzimidazoles/chemistry/*pharmacology ; Endoplasmic Reticulum Stress/drug effects ; Female ; Humans ; Induced Pluripotent Stem Cells/cytology/metabolism ; Mutation ; Neurogenesis ; Neurons/*drug effects/metabolism/pathology ; Parkinson Disease/genetics/*metabolism ; Rats ; alpha-Synuclein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1981-10-02
    Description: The growth in vitro of human breast cancer cells, line MCF-7, was inhibited by a daily supplement of L-arginine (1 milligram per milliliter). Arginine acted synergistically with dibutyryl adenosine 3',5'-monophosphate (cyclic AMP) (10(-6) molar) to enhance the growth inhibitory effect: the cell replication ceased completely within 2 days after treatment. The growth arrest accompanied a change in cell morphology and was preceded by increases in the cellular concentration of cyclic AMP, adenylate cyclase, and type II cyclic AMP-dependent protein kinase activities as well as a decrease of estrogen binding activity. The results suggest that growth of human breast cancer cells is subject to cyclic AMP-mediated regulation and that arginine may play a specific role in this process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cho-Chung, Y S -- Clair, T -- Bodwin, J S -- Berghoffer, B -- New York, N.Y. -- Science. 1981 Oct 2;214(4516):77-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6269181" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/*pharmacology ; Breast Neoplasms/metabolism/*pathology ; Bucladesine/*pharmacology ; Cell Division/*drug effects ; Cell Survival/drug effects ; Cells, Cultured ; Cyclic AMP/metabolism ; Drug Synergism ; Female ; *Growth Inhibitors ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1979-09-28
    Description: Adenosine 3',5'-monophosphate (cyclic AMP) receptor protein of 56,000 daltons increases markedly in mammary tumors induced by 7,12-dimethylbenz[a]anthracene (DMBA) after incubation of tumor slices with cyclic AMP, benzamide, and arginine. Incubation of cytosol from these tumor slices with nuclei from unincubated tumors results in nuclear uptake of the 56,000-dalton cyclic AMP receptor and in phosphorylation of the 76,000-dalton nuclear protein. Binding of the 56,000-dalton receptor and phosphorylation of the 76,000-dalton protein also occur in DMBA tumor nuclei when protein kinase type II of bovine heart is used. The results suggest that cyclic AMP receptor is involved in the nuclear events of a hormone-dependent mammary tumor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cho-Chung, Y S -- Archibald, D -- Clair, T -- New York, N.Y. -- Science. 1979 Sep 28;205(4413):1390-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/224463" target="_blank"〉PubMed〈/a〉
    Keywords: 9,10-Dimethyl-1,2-benzanthracene ; Animals ; Cell Nucleus/metabolism ; Cell-Free System ; Chromosomal Proteins, Non-Histone/*metabolism ; Cyclic AMP/*metabolism ; Female ; Mammary Neoplasms, Experimental/*metabolism ; Neoplasm Proteins/metabolism ; Phosphorylation ; Protein Kinases/*metabolism ; Rats ; Receptors, Cyclic AMP/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...