ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2010-06-05
    Description: The understanding of natural and sexual selection requires both field and laboratory studies to exploit the advantages and avoid the disadvantages of each approach. However, studies have tended to be polarized among the types of organisms studied, with vertebrates studied in the field and invertebrates in the lab. We used video monitoring combined with DNA profiling of all of the members of a wild population of field crickets across two generations to capture the factors predicting the reproductive success of males and females. The factors that predict a male's success in gaining mates differ from those that predict how many offspring he has. We confirm the fundamental prediction that males vary more in their reproductive success than females, and we find that females as well as males leave more offspring when they mate with more partners.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodriguez-Munoz, R -- Bretman, A -- Slate, J -- Walling, C A -- Tregenza, T -- New York, N.Y. -- Science. 2010 Jun 4;328(5983):1269-72. doi: 10.1126/science.1188102.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 EZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20522773" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal ; Female ; *Genetic Fitness ; Gryllidae/*genetics/*physiology ; Male ; *Mating Preference, Animal ; Microsatellite Repeats ; Oviposition ; Reproduction ; *Selection, Genetic ; *Sex Characteristics ; Sexual Behavior, Animal ; Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2010-10-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tingen, C -- Rodriguez, S -- Campo-Engelstein, L -- Woodruff, T K -- New York, N.Y. -- Science. 2010 Oct 22;330(6003):453. doi: 10.1126/science.1196881.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20966235" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Embryo Research/*legislation & jurisprudence ; *Embryonic Stem Cells ; Female ; Financing, Government/legislation & jurisprudence ; Humans ; Mice ; Ovum/physiology ; *Parthenogenesis ; Research Support as Topic/*legislation & jurisprudence ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-02-26
    Description: Metarhizium anisopliae infects mosquitoes through the cuticle and proliferates in the hemolymph. To allow M. anisopliae to combat malaria in mosquitoes with advanced malaria infections, we produced recombinant strains expressing molecules that target sporozoites as they travel through the hemolymph to the salivary glands. Eleven days after a Plasmodium-infected blood meal, mosquitoes were treated with M. anisopliae expressing salivary gland and midgut peptide 1 (SM1), which blocks attachment of sporozoites to salivary glands; a single-chain antibody that agglutinates sporozoites; or scorpine, which is an antimicrobial toxin. These reduced sporozoite counts by 71%, 85%, and 90%, respectively. M. anisopliae expressing scorpine and an [SM1](8):scorpine fusion protein reduced sporozoite counts by 98%, suggesting that Metarhizium-mediated inhibition of Plasmodium development could be a powerful weapon for combating malaria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153607/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153607/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fang, Weiguo -- Vega-Rodriguez, Joel -- Ghosh, Anil K -- Jacobs-Lorena, Marcelo -- Kang, Angray -- St Leger, Raymond J -- 5R21A1079429-02/PHS HHS/ -- R01 AI031478/AI/NIAID NIH HHS/ -- R21 AI079429/AI/NIAID NIH HHS/ -- R21 AI088033/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 25;331(6020):1074-7. doi: 10.1126/science.1199115.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350178" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles gambiae/*microbiology/*parasitology/physiology ; Antibodies, Protozoan/immunology ; Base Sequence ; Cloning, Molecular ; Defensins/genetics/metabolism ; Feeding Behavior ; Female ; Hemolymph/metabolism/microbiology/parasitology ; Humans ; Insect Vectors/*microbiology/*parasitology/physiology ; Malaria, Falciparum/transmission ; Metarhizium/*genetics/physiology ; Molecular Sequence Data ; Oligopeptides/genetics/metabolism ; Organisms, Genetically Modified ; Pest Control, Biological ; Plasmodium falciparum/*physiology ; Protozoan Proteins/immunology ; Salivary Glands/metabolism/parasitology ; Spores, Fungal/physiology ; Sporozoites/physiology ; Transformation, Genetic ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-11-05
    Description: Plain-tailed wrens (Pheugopedius euophrys) cooperate to produce a duet song in which males and females rapidly alternate singing syllables. We examined how sensory information from each wren is used to coordinate singing between individuals for the production of this cooperative behavior. Previous findings in nonduetting songbird species suggest that premotor circuits should encode each bird's own contribution to the duet. In contrast, we find that both male and female wrens encode the combined cooperative output of the pair of birds. Further, behavior and neurophysiology show that both sexes coordinate the timing of their singing based on feedback from the partner and suggest that females may lead the duet.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fortune, Eric S -- Rodriguez, Carlos -- Li, David -- Ball, Gregory F -- Coleman, Melissa J -- New York, N.Y. -- Science. 2011 Nov 4;334(6056):666-70. doi: 10.1126/science.1209867.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA. eric.fortune@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22053048" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Male ; Neurons/*physiology ; Songbirds/*physiology ; Vocalization, Animal/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-03-19
    Description: Decreased cardiac contractility is a central feature of systolic heart failure. Existing drugs increase cardiac contractility indirectly through signaling cascades but are limited by their mechanism-related adverse effects. To avoid these limitations, we previously developed omecamtiv mecarbil, a small-molecule, direct activator of cardiac myosin. Here, we show that it binds to the myosin catalytic domain and operates by an allosteric mechanism to increase the transition rate of myosin into the strongly actin-bound force-generating state. Paradoxically, it inhibits adenosine 5'-triphosphate turnover in the absence of actin, which suggests that it stabilizes an actin-bound conformation of myosin. In animal models, omecamtiv mecarbil increases cardiac function by increasing the duration of ejection without changing the rates of contraction. Cardiac myosin activation may provide a new therapeutic approach for systolic heart failure.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090309/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090309/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malik, Fady I -- Hartman, James J -- Elias, Kathleen A -- Morgan, Bradley P -- Rodriguez, Hector -- Brejc, Katjusa -- Anderson, Robert L -- Sueoka, Sandra H -- Lee, Kenneth H -- Finer, Jeffrey T -- Sakowicz, Roman -- Baliga, Ramesh -- Cox, David R -- Garard, Marc -- Godinez, Guillermo -- Kawas, Raja -- Kraynack, Erica -- Lenzi, David -- Lu, Pu Ping -- Muci, Alexander -- Niu, Congrong -- Qian, Xiangping -- Pierce, Daniel W -- Pokrovskii, Maria -- Suehiro, Ion -- Sylvester, Sheila -- Tochimoto, Todd -- Valdez, Corey -- Wang, Wenyue -- Katori, Tatsuo -- Kass, David A -- Shen, You-Tang -- Vatner, Stephen F -- Morgans, David J -- 1-R43-HL-66647-1/HL/NHLBI NIH HHS/ -- R01 HL106511/HL/NHLBI NIH HHS/ -- R43 HL066647/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 18;331(6023):1439-43. doi: 10.1126/science.1200113.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Preclinical Research and Development, Cytokinetics, Inc., South San Francisco, CA 94080, USA. fmalik@cytokinetics.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21415352" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Actins/metabolism ; Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/metabolism ; Adrenergic beta-Agonists/pharmacology ; Allosteric Regulation ; Animals ; Binding Sites ; Calcium/metabolism ; Cardiac Myosins/chemistry/*metabolism ; Cardiac Output/drug effects ; Dogs ; Female ; Heart Failure, Systolic/*drug therapy/physiopathology ; Isoproterenol/pharmacology ; Male ; Myocardial Contraction/*drug effects ; Myocytes, Cardiac/*drug effects/physiology ; Phosphates/metabolism ; Protein Binding ; Protein Conformation ; Protein Isoforms/chemistry/metabolism ; Rats ; Rats, Sprague-Dawley ; Urea/*analogs & derivatives/chemistry/metabolism/pharmacology ; Ventricular Function, Left/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-10-16
    Description: Topical agents, such as microbicides, that can protect against human immunodeficiency virus (HIV) transmission are urgently needed. Using a chimeric simian/human immunodeficiency virus (SHIV SF162), which is tropic for the chemokine receptor CCR5, we report that topical application of high doses of PSC-RANTES, an amino terminus-modified analog of the chemokine RANTES, provided potent protection against vaginal challenge in rhesus macaques. These experimental findings have potentially important implications for understanding vaginal transmission of HIV and the design of strategies for its prevention.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lederman, Michael M -- Veazey, Ronald S -- Offord, Robin -- Mosier, Donald E -- Dufour, Jason -- Mefford, Megan -- Piatak, Michael Jr -- Lifson, Jeffrey D -- Salkowitz, Janelle R -- Rodriguez, Benigno -- Blauvelt, Andrew -- Hartley, Oliver -- AI 36219/AI/NIAID NIH HHS/ -- AI 51649/AI/NIAID NIH HHS/ -- N01-CO-124000/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 15;306(5695):485-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Case Western Reserve University, University Hospitals, 2061 Cornell Road, Cleveland, OH 44106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15486300" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Intravaginal ; Animals ; Anti-HIV Agents/administration & dosage/*therapeutic use ; Anti-Infective Agents, Local/administration & dosage/*therapeutic use ; Antibodies, Viral/blood ; *CCR5 Receptor Antagonists ; Chemokine CCL5/administration & dosage/*analogs & derivatives/*therapeutic use ; Dose-Response Relationship, Drug ; Drug Evaluation, Preclinical ; Female ; HIV Infections/*prevention & control/transmission ; HIV-1/drug effects ; Macaca mulatta ; Receptors, CCR5/metabolism ; Simian Acquired Immunodeficiency Syndrome/*prevention & control/transmission ; Simian Immunodeficiency Virus/drug effects/immunology ; Vagina/*virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2010-06-11
    Description: Down's syndrome (DS) is a genetic disorder caused by full or partial trisomy of human chromosome 21 and presents with many clinical phenotypes including a reduced incidence of solid tumours. Recent work with the Ts65Dn model of DS, which has orthologues of about 50% of the genes on chromosome 21 (Hsa21), has indicated that three copies of the ETS2 (ref. 3) or DS candidate region 1 (DSCR1) genes (a previously known suppressor of angiogenesis) is sufficient to inhibit tumour growth. Here we use the Tc1 transchromosomic mouse model of DS to dissect the contribution of extra copies of genes on Hsa21 to tumour angiogenesis. This mouse expresses roughly 81% of Hsa21 genes but not the human DSCR1 region. We transplanted B16F0 and Lewis lung carcinoma tumour cells into Tc1 mice and showed that growth of these tumours was substantially reduced compared with wild-type littermate controls. Furthermore, tumour angiogenesis was significantly repressed in Tc1 mice. In particular, in vitro and in vivo angiogenic responses to vascular endothelial growth factor (VEGF) were inhibited. Examination of the genes on the segment of Hsa21 in Tc1 mice identified putative anti-angiogenic genes (ADAMTS1and ERG) and novel endothelial cell-specific genes, never previously shown to be involved in angiogenesis (JAM-B and PTTG1IP), that, when overexpressed, are responsible for inhibiting angiogenic responses to VEGF. Three copies of these genes within the stromal compartment reduced tumour angiogenesis, explaining the reduced tumour growth in DS. Furthermore, we expect that, in addition to the candidate genes that we show to be involved in the repression of angiogenesis, the Tc1 mouse model of DS will permit the identification of other endothelium-specific anti-angiogenic targets relevant to a broad spectrum of cancer patients.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479956/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479956/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reynolds, Louise E -- Watson, Alan R -- Baker, Marianne -- Jones, Tania A -- D'Amico, Gabriela -- Robinson, Stephen D -- Joffre, Carine -- Garrido-Urbani, Sarah -- Rodriguez-Manzaneque, Juan Carlos -- Martino-Echarri, Estefania -- Aurrand-Lions, Michel -- Sheer, Denise -- Dagna-Bricarelli, Franca -- Nizetic, Dean -- McCabe, Christopher J -- Turnell, Andrew S -- Kermorgant, Stephanie -- Imhof, Beat A -- Adams, Ralf -- Fisher, Elizabeth M C -- Tybulewicz, Victor L J -- Hart, Ian R -- Hodivala-Dilke, Kairbaan M -- 080174/Wellcome Trust/United Kingdom -- 12007/Cancer Research UK/United Kingdom -- A12007/Cancer Research UK/United Kingdom -- A3585/Cancer Research UK/United Kingdom -- G0501003/Medical Research Council/United Kingdom -- G0501003(75694)/Medical Research Council/United Kingdom -- G0601056/Medical Research Council/United Kingdom -- G0901609/Medical Research Council/United Kingdom -- MC_U117527252/Medical Research Council/United Kingdom -- U.1175.02.001.00001(60485)/Medical Research Council/United Kingdom -- England -- Nature. 2010 Jun 10;465(7299):813-7. doi: 10.1038/nature09106.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Adhesion and Angiogenesis Laboratory, Barts Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK. l.reynolds@qmul.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20535211" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins/genetics/metabolism ; Animals ; Carcinoma, Lewis Lung/*blood supply/complications/genetics/pathology ; Carrier Proteins/genetics/metabolism ; Cell Adhesion Molecules/antagonists & inhibitors/genetics/metabolism ; Chromosomes, Mammalian/genetics ; *Disease Models, Animal ; Down Syndrome/complications/*genetics/physiopathology ; Female ; Gene Dosage/*genetics ; Humans ; Immunoglobulins/genetics/metabolism ; Male ; Melanoma, Experimental/*blood supply/complications/genetics/pathology ; Mice ; Neoplasm Transplantation ; Neovascularization, Pathologic/*genetics/pathology ; Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Protein c-ets-2/genetics/metabolism ; Transcription Factors ; Trisomy/genetics ; Vascular Endothelial Growth Factor A/antagonists & ; inhibitors/metabolism/pharmacology ; Vascular Endothelial Growth Factor Receptor-2/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2012-06-23
    Description: Breast carcinoma is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis and responses to available therapy. Recurrent somatic alterations in breast cancer have been described, including mutations and copy number alterations, notably ERBB2 amplifications, the first successful therapy target defined by a genomic aberration. Previous DNA sequencing studies of breast cancer genomes have revealed additional candidate mutations and gene rearrangements. Here we report the whole-exome sequences of DNA from 103 human breast cancers of diverse subtypes from patients in Mexico and Vietnam compared to matched-normal DNA, together with whole-genome sequences of 22 breast cancer/normal pairs. Beyond confirming recurrent somatic mutations in PIK3CA, TP53, AKT1, GATA3 and MAP3K1, we discovered recurrent mutations in the CBFB transcription factor gene and deletions of its partner RUNX1. Furthermore, we have identified a recurrent MAGI3-AKT3 fusion enriched in triple-negative breast cancer lacking oestrogen and progesterone receptors and ERBB2 expression. The MAGI3-AKT3 fusion leads to constitutive activation of AKT kinase, which is abolished by treatment with an ATP-competitive AKT small-molecule inhibitor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148686/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148686/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banerji, Shantanu -- Cibulskis, Kristian -- Rangel-Escareno, Claudia -- Brown, Kristin K -- Carter, Scott L -- Frederick, Abbie M -- Lawrence, Michael S -- Sivachenko, Andrey Y -- Sougnez, Carrie -- Zou, Lihua -- Cortes, Maria L -- Fernandez-Lopez, Juan C -- Peng, Shouyong -- Ardlie, Kristin G -- Auclair, Daniel -- Bautista-Pina, Veronica -- Duke, Fujiko -- Francis, Joshua -- Jung, Joonil -- Maffuz-Aziz, Antonio -- Onofrio, Robert C -- Parkin, Melissa -- Pho, Nam H -- Quintanar-Jurado, Valeria -- Ramos, Alex H -- Rebollar-Vega, Rosa -- Rodriguez-Cuevas, Sergio -- Romero-Cordoba, Sandra L -- Schumacher, Steven E -- Stransky, Nicolas -- Thompson, Kristin M -- Uribe-Figueroa, Laura -- Baselga, Jose -- Beroukhim, Rameen -- Polyak, Kornelia -- Sgroi, Dennis C -- Richardson, Andrea L -- Jimenez-Sanchez, Gerardo -- Lander, Eric S -- Gabriel, Stacey B -- Garraway, Levi A -- Golub, Todd R -- Melendez-Zajgla, Jorge -- Toker, Alex -- Getz, Gad -- Hidalgo-Miranda, Alfredo -- Meyerson, Matthew -- CA089393/CA/NCI NIH HHS/ -- CA122099/CA/NCI NIH HHS/ -- R01 CA122099/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jun 20;486(7403):405-9. doi: 10.1038/nature11154.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722202" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Breast Neoplasms/*classification/*genetics/pathology ; Core Binding Factor Alpha 2 Subunit/genetics ; Core Binding Factor beta Subunit/genetics ; DNA Mutational Analysis ; Exome/genetics ; Female ; Gene Fusion/genetics ; Humans ; Membrane Proteins/genetics ; Mexico ; Mutation/*genetics ; Proto-Oncogene Proteins c-akt/antagonists & inhibitors/genetics/metabolism ; Translocation, Genetic/*genetics ; Vietnam
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2012-10-23
    Description: Reported widespread declines of wild and managed insect pollinators have serious consequences for global ecosystem services and agricultural production. Bees contribute approximately 80% of insect pollination, so it is important to understand and mitigate the causes of current declines in bee populations . Recent studies have implicated the role of pesticides in these declines, as exposure to these chemicals has been associated with changes in bee behaviour and reductions in colony queen production. However, the key link between changes in individual behaviour and the consequent impact at the colony level has not been shown. Social bee colonies depend on the collective performance of many individual workers. Thus, although field-level pesticide concentrations can have subtle or sublethal effects at the individual level, it is not known whether bee societies can buffer such effects or whether it results in a severe cumulative effect at the colony level. Furthermore, widespread agricultural intensification means that bees are exposed to numerous pesticides when foraging, yet the possible combinatorial effects of pesticide exposure have rarely been investigated. Here we show that chronic exposure of bumblebees to two pesticides (neonicotinoid and pyrethroid) at concentrations that could approximate field-level exposure impairs natural foraging behaviour and increases worker mortality leading to significant reductions in brood development and colony success. We found that worker foraging performance, particularly pollen collecting efficiency, was significantly reduced with observed knock-on effects for forager recruitment, worker losses and overall worker productivity. Moreover, we provide evidence that combinatorial exposure to pesticides increases the propensity of colonies to fail.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495159/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495159/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gill, Richard J -- Ramos-Rodriguez, Oscar -- Raine, Nigel E -- 094886/Wellcome Trust/United Kingdom -- BB/I000178/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2012 Nov 1;491(7422):105-8. doi: 10.1038/nature11585. Epub 2012 Oct 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK. richard.gill@rhul.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23086150" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bees/*drug effects/*physiology ; Behavior, Animal/*drug effects/physiology ; Feeding Behavior/drug effects ; Female ; Imidazoles/pharmacology ; Insecticides/*pharmacology ; Male ; Nitro Compounds/pharmacology ; Pollen/metabolism ; Pollination/drug effects ; Pyrethrins/pharmacology ; *Social Behavior ; Social Dominance ; Survival Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-05-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodriguez, Ivan -- England -- Nature. 2014 May 15;509(7500):294-6. doi: 10.1038/509294a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Evolution, University of Geneva, CH-1205 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24828185" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Galanin/*metabolism ; Male ; Maternal Behavior/*physiology ; Neurons/*metabolism ; Paternal Behavior/*physiology ; Preoptic Area/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...