ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 13 (1989), S. 539-544 
    ISSN: 1432-1009
    Keywords: Mesocosms ; Experimental ecosystems ; Field validation ; Regulatory testing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Tiered testing for the effects of chemicals on aquatic ecosystems has begun to include tests at the ecosystem level as a component in pesticide regristration. Because such tests are expensive, regulators and industry need to know what additional information they can gain from such tests relative to the costs of the simpler single-species toxicity bioassays. Requirements for ecosystem-level testing have developed because resource managers have not fully understood the implications of potential damage to resources without having evaluations of the predicted impacts under field conditions. We review approaches taken in the use of experimental ecosystems, discuss benefits and limitations of small- and large-scale ecosystem tests, and point to correlative approaches between laboratory and field toxicity testing. Laboratory experimental ecosystems (microcosms) have been successfully used to measure contaminant bioavailability, to determine routes of uptake in moderately complex aquatic systems, and to isolate factors modifying contaminant uptake into the biota. Such factors cannot be as readily studied in outdoor experimental ecosystems because direct cause-and-effect relations are often confounded and difficult to isolate. However, laboratory tests can be designed to quantify the relations among three variables: known concentrations of Stressors; specific sublethal behavioral, biochemical, and physiological effects displayed by organisms; and responses that have been observed in ecosystem-level analyses. For regulatory purposes, the specificity of test results determines how widely they can be applied. Ecotoxicological research should be directed at attempts to identify instances where single-species testing would be the appropriate level of analysis for identifying critical ecological endpoints and for clarifying relationships between ecosystem structure and function, and where it would be inadequate for a given level of analysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5117
    Keywords: Loosestrife ; Lythrum salicaria ; cattail ; decomposition ; phosphorus ; wetland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Purple Loosestrife is rapidly displacing native vegetation in North American wetlands. Associated changes in wetland plant communities are well understood. Effects of Loosestrife invasion on nutrient cycling and decomposition rates in affected wetlands are unknown, though potentially of significance to wetland function. We used litter bag methods to quantify decomposition rates and phosphorus concentrations of purple Loosestrife (Lythrum salicaria) and native cattails (Typha spp.) in fourteen Minnesota wetlands. A 170-day study that began in autumn modeled decomposition of Loosestrife leaves. Loosestrife stems andTypha shoots that had overwintered and fragmented were measured in a 280- day study that began in spring. In general, Loosestrife leaves decomposed most rapidly of the three;Typha shoots decomposed faster than Loosestrife stems. Significant decay coefficients (k-values) were determined by F-testing single exponential model regressions of different vegetation types in the fourteen wetlands. Significant decay coefficients were:k = 2.5 × 10−3 and 4.32 × 10−3 for all Loosestrife leaves (170 d);k = 7.2 × 10−4 and 1.11 × 10−3 for overwintered Loosestrife stems (280-d) andk = 7.9 × 10−4, 1.42 × 10−3 and 2.24 × 10−3 for overwinteredTypha shoots (280-d). Phosphorus concentrations of plant tissue showed an initial leaching followed by stabilization or increase probably associated with microbial growth. Loosestrife leaves had twice the phosphorus concentration of Loosestrife stems andTypha shoots. Our results indicate that conversion of wetland vegetation from cattails to Loosestrife may result in significant change in wetland function by altering timing of litter input and downstream phosphorus loads. Conversion of a riverine, flow- through wetland fromTypha to Loosestrife may effectively accelerate eutrophication of downstream water bodies. Impacts of Loosestrife invasion must be considered when wetlands are managed for wildlife or for improvement of downstream water quality.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...