ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • LUNAR AND PLANETARY EXPLORATION  (21)
  • Instrumentation and Photography  (2)
  • Exobiology  (1)
  • Lunar and Planetary Science and Exploration; Space Sciences (General)  (1)
  • 1
    Publication Date: 2014-09-04
    Description: Robotic surface missions to the Moon should be capable of measuring mineral as well as chemical abundances in regolith samples. Although much is already known about the lunar regolith, our data are far from comprehensive. Most of the regolith samples returned to Earth for analysis had lost the upper surface, or it was intermixed with deeper regolith. This upper surface is the part of the regolith most recently exposed to the solar wind; as such it will be important to resource assessment. In addition, it may be far easier to mine and process the uppermost few centimeters of regolith over a broad area than to engage in deep excavation of a smaller area. The most direct means of analyzing the regolith surface will be by studies in situ. In addition, the analysis of the impact-origin regolith surfaces, the Fe-rich glasses of mare pyroclastic deposits, are of resource interest, but are inadequately known; none of the extensive surface-exposed pyroclastic deposits of the Moon have been systematically sampled, although we know something about such deposits from the Apollo 17 site. Because of the potential importance of pyroclastic deposits, methods to quantify glass as well as mineral abundances will be important to resource evaluation. Combined x ray diffraction (XRD) and x ray fluorescence (XRF) analysis will address many resource characterization problems on the Moon. XRF methods are valuable for obtaining full major-element abundances with high precision. Such data, collected in parallel with quantitative mineralogy, permit unambiguous determination of both mineral and chemical abundances where concentrations are high enough to be of resource grade. Collection of both XRD and XRF data from a single sample provides simultaneous chemical and mineralogic information. These data can be used to correlate quantitative chemistry and mineralogy as a set of simultaneous linear equations, the solution of which can lead to full characterization of the sample. The use of Rietveld methods for XRD data analysis can provide a powerful tool for quantitative mineralogy and for obtaining crystallographic data on complex minerals.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Joint Workshop on New Technologies for Lunar Resource Assessment; p 50-51
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical, and biochemical properties. Although known abundances on the Moon are limited (approximately 0.1 percent in mare soils), sulfur is relatively extractable by heating. Coproduction of sulfur during oxygen extraction from ilmenite-rich mare soils could yield sulfur in masses up to 10 percent of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA. Johnson Space Center, The Second Conference on Lunar Bases and Space Activities of the 21st Century, Volume 2; p 429-435
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The requirements for obtaining geological, geochemical, geophysical, and meteorological data on the surface of Mars associated with manned landings were analyzed. Specific instruments were identified and their mass and power requirements estimated. A total of 1 to 5 metric tons, not including masses of drill rigs and surface vehicles, will need to be landed. Power associated only with the scientific instruments is estimated to be 1 to 2 kWe. Requirements for surface rover vehicles were defined and typical exploration traverses during which instruments will be positioned and rock and subsurface core samples obtained were suggested.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA. Marshall Space Flight Center Manned Mars Mission. Working Group Papers, V. 2, Sect. 5, App.; p 532-542
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-02
    Description: An important goal of the Mars Science Laboratory (MSL 09) mission is the determination of definitive mineralogy and chemical composition. CheMin is a miniature X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that has been chosen for the analytical laboratory of MSL. CheMin utilizes a miniature microfocus source cobalt X-ray tube, a transmission sample cell and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D X-ray diffraction patterns and X-ray fluorescence spectra from powdered or crushed samples. A diagrammatic view of the instrument is shown.
    Keywords: Instrumentation and Photography
    Type: Lunar and Planetary Science XXXVI, Part 2; LPI-Contrib-1234-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-25
    Description: Our knowledge of lunar materials is based on (1) sample collections (by the Apollo and Lunar missions, supplemented by Antarctic lunar meteorites); and (2) remote sensing (Earth-based or by spacecraft). The characterization of lunar materials is limited by the small number of sampled sites and the incomplete remote-sensing database (geochemical data collected from orbit cover 20 percent of the lunar surface). There is much about lunar surface materials that remains to be discovered. Listed are some features suspected form present knowledge: (1) Polar Materials; (2) Farside Materials; (3) Crater-Floor Materials; (4) Crater-Wall and Central Peak Materials; (5) Volcanic Shield and Dome Materials; (6) Transient-Event Materials; and (7) Meteoritic and Cometary Materials; This short list of likely discoveries isn't exhaustive. We know much about a few spots on the Moon, but little about the full range of lunar materials.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Arizona Univ., Resources of Near-Earth Space: Abstracts; p 41
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-27
    Description: Recent studies have greatly expanded knowledge of lunar mare basalts. Since 1976 there has been a revision of the Apollo 12 low-Ti mare basalt suite and the discovery of a new very low-Ti (VLT: less than 1% TiO2) basalt suite at Apollo 17 and in the new Soviet samples from Mare Crisium (LUNA 24). Current studies suggest that the VLT basalts may be in some way related to the enigmatic 'green glasses' which are found in the soils from every lunar landing site. Telescopic studies of spectral reflectance and crater systematics show that basalts of varying Ti content were extruded throughout the history of mare volcanism. These new discoveries indicate that mare basalts can no longer be classified into the two simple groups of older high-Ti basalts and younger low-Ti basalts.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Geophysical Research Letters; 5; June 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-27
    Description: Size can be used as a criterion to select 18 large (larger than 1 cm) samples from among 148 melt-rock fragments of all sizes. This selection provides a suite of large samples which represent the important chemical variants among highland melt rocks; each large sample has enough material for a number of sample-destructive studies, as well as for future reference. Cluster analysis of the total data base of 148 highland melt rocks shows six distinct groups: anorthosite, gabbroic anorthosite, anorthositic gabbro ('highland basalt'), low K Fra Mauro, intermediate-K Fra Mauro, and high-K. Large samples are available for four of the melt-rock groups (gabbroic anorthosite, anorthositic gabbro, low-K Fra Mauro, and intermediate-K Fra Mauro). This sample selection reveals two subgroups of anorthositic gabbro (one anorthite-poor with negative Eu anomaly and one anorthite-rich without Eu anomaly). There is a sharp distinction between those Apollo 16 melt rocks and glasses which have both been classified as 'gabbroic anorthosite'.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Geophysical Research Letters; 5; June 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.
    Keywords: Exobiology
    Type: GSFC-E-DAA-TN21724 , Science (ISSN 0036-8075) (e-ISSN 1095-9203); 343; 6169; 1244734
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Data for 35 major, minor, and trace elements in 40 bulk and size fractions of core 70005-70003 (140-250 cm) are presented. The core is heterogeneous with depth. Moreover, the 1000 to 90 micron coarse fractions are nearly identical but quite different from the less than 20 micron fine fraction. The bulk soil chemistry is governed by the coarse fractions, because of their greater weight proportion in the sample. The 1000-90 micron fraction contains more ilmenite basalt and less orange glass components than the 90-20 micron fraction. The less than 20 micron fraction is consistently enriched in highland material at all depths in the drill core.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Science Conference; Mar 19, 1979 - Mar 23, 1979; Houston, TX
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Modal data support a five-unit stratigraphy for the Apollo 17 drill core. The upper unit E (0-22 cm depth) is marked by high content of fused soil, brown glass, and mare basalt fragments. This unit corresponds with a portion of the core excavated and refilled within the last 2 m.y. The underlying unit D (22071 cm depth) has a low abundance of fused soil (i.e., low maturity) and is rich in coarse (less than 200 microns) mare fragments. A large section of the core, unit C (71-224 cm depth), is finer-grained, more mature (richer in agglutinates), more feldspathic and has more highland lithic, mineral and glass fragments than unit D. The next underlying unit, B (224-256 cm depth), has yellow/colorless KREEP glasses with a high Si, low-alkali composition unlike the common Apollo 15 or Apollo 17 KREEP series. The petrologic (fused soil) and Is/FeO maturity of this layer is also lower than the units above and below. The deepest unit, A (256-284 cm depth), is marked by its relatively higher maturity and lower yellow/colorless KREEP glass content. The most prominent petrographic/stratigraphic indicators are the pyroxene-rich immature mare unit D and the abundance of KREEP glass in unit B. This KREEP glass is distinctive petrographically and compositionally, and is probably exotic to the Apollo 17 site. It is suggested here that the KREEP glass in unit B is derived from Tycho, which implies widespread distribution of KREEP on the lunar nearside.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Science Conference; Mar 19, 1979 - Mar 23, 1979; Houston, TX
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...