ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 124 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The central Taupo Volcanic Zone (TVZ) of New Zealand is a region of intense Quaternary silicic volcanism, active since 1.6 Ma. We report palaeomagnetic measurements from 59 distinct volcanic units sampled at 98 sites in the TVZ. These are mainly rhyolitic ignimbrites and lava domes, with a few basaltic, andesitic, and dacitic lavas. Most have new K/Ar or 40Ar/39 Ar ages. The remanent magnetizations are generally stable to both thermal and alternating-field demagnetization, and well-determined mean palaeodirections were obtained for all sites.Our findings suggest that the Taupo, Whakamaru, Maroa, Reporoa, Rotorua, and Okataina volcanic centres were magnetized during the Brunhes normal chron. Kapenga is an older volcanic centre, where activity commenced around 0.89 Ma and extended into the Brunhes. Mangakino volcanic centre is significantly older and was active from 1.6 to 0.95 Ma.Transitional or intermediate palaeodirections were obtained from Ahuroa ignimbrite (1.18 ± 0.02 Ma) and Mamaku ignimbrite (0.22 ± 0.01 Ma). The former almost certainly corresponds to the Cobb Mountain Event. The latter is significantly older than the Blake Event, and probably corresponds to the recently reported Pringle Falls/Summer Lake magnetic episode.Multiple sites from the Whakamaru ignimbrite have indistinguishable 40Ar/39 Ar ages (0.33 ± 0.01 Ma) and glass composition, but divergent palaeomagnetic directions. This contrast suggests that either (1) the different sites were formed during a phase of extremely violent activity, lasting up to a few hundred years, during which geomagnetic secular variation was recorded; or (2) that they were formed in a single eruption, and rotation during subsequent extensional tectonism has caused divergence of the palaeodirections. 40Ar/39Ar ages of 0.77 ± 0.03 Ma for the reversely magnetized Rahopeka ignimbrite and 0.71 ± 0.06 Ma for the overlying normally magnetized Waiotapu ignimbrite bracket and constrain the age of the Maluyama-Brunhes transition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 378 (1995), S. 605-607 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The central Taupo Volcanic Zone (TVZ; Fig. 1) is the most productive Quaternary rhyolitic volcanic system on Earth. At least 34 voluminous ignimbrites (30-1,000 km3 bulk volume) have been erupted from eight caldera volcanoes"'12 in central TVZ since 1.6Myr. Several of the New Zealand ignimbrites ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0819
    Keywords: explosive volcanism ; dome-building volcanism ; phreatomagmatic acticity ; fall deposits ; surge deposits ; rhyolite ; Maroa volcano
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The 14 ka Puketarata eruption of Maroa caldera in Taupo Volcanic Zone was a dome-related event in which the bulk of the 0.25 km3 of eruption products were emplaced as phreatomagmatic fall and surge deposits. A rhyolitic dike encountered shallow groundwater during emplacement along a NE-trending normal fault, leading to shallow-seated explosions characterised by low to moderate water/magma ratios. The eruption products consist of two lava domes, a proximal tuff ring, three phreatic collapse craters, and a widespread fall deposit. The pyroclastic deposits contain dominantly dense juvenile clasts and few foreign lithics, and relate to very shallow-level disruption of the growing dome and its feeder dike with relatively little involvement of country rock. The distal fall deposit, representing 88% of the eruption products is, despite its uniform appearance and apparently subplinian dispersal, a composite feature equivalent to numerous discrete proximal phreatomagmatic lapilli fall layers, each deposited from a short-lived eruption column. The Puketarata products are subdivided into four units related to successive phases of:(A) shallow lava intrusion and initial dome growth; (B) rapid growth and destruction of dome lobes; (C) slower, sustained dome growth and restriction of explosive disruption to the dome margins; and (D) post-dome withdrawal of magma and crater-collapse. Phase D was phreatic, phases A and C had moderate water: magma ratios, and phase B a low water: magma ratio. Dome extrusion was most rapid during phase B, but so was destruction, and hence dome growth was largely accomplished during phase C. The Puketarata eruption illustrates how vent geometry and the presence of groundwater may control the style of silicic volcanism. Early activity was dominated by these external influences and sustained dome growth only followed after effective exclusion of external water from newly emplaced magma.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0819
    Keywords: Clast recycling ; juvenile clasts ; basaltic phreatomagmatic volcanism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The juvenile content of phreatomagmatic deposits contains both ‘first-cycle’ juvenile clasts derived from magma at the instant of eruption, and recycled juvenile clasts, which were fragmented and first ejected by earlier explosions during the eruption, but fell back or collapsed into the vent. Recycled juvenile clasts are similar to accessory and accidental lithics in that they contribute no heat to further magma: water interaction, but previously no effective criteria have been defined to separate them from ‘first-cycle’ juvenile clasts. We have investigated componentry parameters (vesicularity, clast morphology and extent of mud-coating) which, in specific circumstances, can distinguish between first-cycle juvenile clasts, involved in only one explosion, and such recycled juvenile clasts. Phreatomagmatic fall deposits commonly show gross grainsize and sorting characteristics identical to deposits of purely ‘dry’ or magmatic eruptions. However the abundance of non-juvenile clasts in pyroclastic deposits is a sensitive indicator of the involvement of external water. If this component is calculated including recycled juvenile clasts with accidental and accessory clasts the contrast is even more striking. Data from a Holocene maar deposit in Taupo Volcanic Zone, New Zealand, suggest that the first-cycle juvenile component of the deposits is less than one-third of that determined by simple juvenile:lithic:crystal componentry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0819
    Keywords: Key words Explosive volcanism ; Magmatic ; Phreatomagmatic ; Crater Hill ; Basalt
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  A series of alternating phreatomagmatic ("wet") and magmatic ("dry") basaltic pyroclastic deposits forming the Crater Hill tuff ring in New Zealand contains one unit (M1) which can only be interpreted as the products of mixing of ejecta from simultaneous wet and dry explosions at different portions of a multiple vent system. The principal characteristics of M1 are (a) rapid lateral changes in the thicknesses of, and proportions in juvenile components in individual beds, and (b) wide ranges of juvenile clast densities in every sample. M1 appears to have been associated with an elongate source of highly variable and fluctuating magma : water ratios and magma discharge rates. This contrasts with the only other documented mixed (wet and dry) basaltic pyroclastic deposits where mixing from two point sources of quite different but stable character has been inferred.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 51 (1989), S. 51-68 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Ruapehu composite volcano is a dynamic volcanic-sedimentary system, characterised by high accumulation rates and by rapid lateral and vertical change in facies. Four major cone-building episodes have occurred over 250 Ka, from a variety of summit, flank and satellite vents. Eruptive styles include subplinian, strombolian, phreatomagmatic, vulcanian and dome-related explosive eruptions, and extrusion of lava flows and domes. The volcano can be divided into two parts: a composite cone of volume 110 km3, surrounded by an equally voluminous ring plain. Complementary portions of Ruapehu's history are preserved in cone-forming and ring plain environments. Cone-forming sequences are dominated by sheet- and autobrecciated-lava flows, which seldom reach the ring plain. The ring plain is built predominantly from the products of explosive volcanism, both the distal primary pyroclastic deposits and the reworked material eroded from the cone. Much of the material entering the ring plain is transported by lahars either generated directly by eruptions or triggered by the high intensity rain storms which characterise the region. Ring plain detritus is reworked rapidly by concentrated and hyperconcentrated streams in pulses of rapid aggradation immediately following eruptions and more gradually in the longer intervals between eruptions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0819
    Keywords: Taupo eruption ; Plinian ; Phreatoplinian ; Vent migration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The 1800a Taupo eruption was one of the most complex silicic eruptions worldwide within the past 5000 years. New work on phases 3 and 4, the Hatepe and Rotongaio ashes, has identified a mappable internal stratigraphy for each, enabling detailed isopach and isopleth measurements for subunits within the deposits. The new data indicate that the vent configuration for the Taupo eruption was more complex than previously thought and involved at least three sources on a NE-SW fissure centred on Horomatangi Reefs. Phases 1–3 of the eruption were from a southwestern vent(s), phase 4 from a northeastern source, and phases 5 and 6 probably from the Horomatangi Reefs area. A separate source for the Rotongaio ash (phase 4) helps explain the contrast between the pumice-rich phases of the eruption and the dense juvenile clasts of the Rotongaio ash. The Rotongaio magma resided in a separate, initially blind conduit and was degassing prior to and during earlier phases of the Taupo eruption. This new work on the Hatepe and Rotongaio ashes underscores the importance of a detailed stratigraphic framework in deciphering extremely fine-grained fall units of largescale sustained eruptions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0819
    Keywords: Key words Taupo eruption ; Plinian ; Phreatoplinian ; Vent migration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The 1800a Taupo eruption was one of the most complex silicic eruptions worldwide within the past 5000 years. New work on phases 3 and 4, the Hatepe and Rotongaio ashes, has identified a mappable internal stratigraphy for each, enabling detailed isopach and isopleth measurements for subunits within the deposits. The new data indicate that the vent configuration for the Taupo eruption was more complex than previously thought and involved at least three sources on a NE–SW fissure centred on Horomatangi Reefs. Phases 1–3 of the eruption were from a southwestern vent(s), phase 4 from a northeastern source, and phases 5 and 6 probably from the Horomatangi Reefs area. A separate source for the Rotongaio ash (phase 4) helps explain the contrast between the pumice-rich phases of the eruption and the dense juvenile clasts of the Rotongaio ash. The Rotongaio magma resided in a separate, initially blind conduit and was degassing prior to and during earlier phases of the Taupo eruption. This new work on the Hatepe and Rotongaio ashes underscores the importance of a detailed stratigraphic framework in deciphering extremely fine-grained fall units of large-scale sustained eruptions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0819
    Keywords: Stratovolcano Explosive volcanism Tephra remobilisation Lahars Ruapehu Volcanic hazards
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract. A feature of small-scale explosive volcanism at stratovolcanoes is the rapid destruction of primary near-vent pyroclastic deposits by sedimentary processes. A protracted series of explosive eruptions of moderate volume from September 1995 until July 1996 at Mount Ruapehu in New Zealand, its largest eruptive episode this century, afforded an opportunity to study these remobilisation processes in detail. All significant sub-plinian eruptions occurred in mid-winter, forming metre-thick tephra accumulations on steep slopes covered with perennial ice and seasonal snow. Subsequent events demonstrated the variety and complexity of the erosion processes that remobilise primary pyroclasts in such a setting. These processes arose from the complex interactions of tephra with snow and ice, and liquid water in varying proportions, and were very diverse in nature and scale. Their effectiveness can be gauged from the fact that there is almost no stratigraphic record of any of the 〉40 eruption episodes recorded in the past 100 years at Ruapehu. Syn-eruptive remobilisation processes included the generation of eruption-triggered lahars by the ejection of hot water from the Crater Lake. Post-eruptive interactions mainly remobilised fall deposits from proximal areas, and included rain-triggered lahars, which were among the largest and most hazardous events with the greatest distal impacts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Almost pure andradite and intermediate members of the andradite-grossular series (gros40–49, and 47–54, py0–3, alm0–3, spess0–2, hydrogarnet0–3), often framboidal in habit, are widespread in metabasites including lavas, minor intrusions, and volcanic sandstones and breccias metamorphosed under prehnite-pumpellyite and pumpellyite-actinolite facies conditions, possibly extending into the zeolite facies. Coexisting phases include iron-rich epidotes (100 Fe*/Fe*+Al=22–34), pumpellyite, prehnite, actinolite, and chlorite, electron microprobe analyses of which are given, as well as quartz, albite, and calcite. Zoisite (100 Fe*/Fe*+Al=1–5) and iron-poor epidote (100 Fe*/Fe*+Al=11–18) occur in 2 rocks in pseudomorphs after plagioclase together with more iron-rich epidote, but not in close association with the garnets. Coexisting pumpellyite is iron-rich (FeO* 9–14%) in the prehnite-pumpellyite facies and iron-poor (FeO* 5%) in the pumpellyiteactinolite facies. Chlorites and actinolites vary widely and sympathetically in FeO/MgO+FeO ratio. Andradite is also described from a stilpnomelane-actinolite-hematite-bearing andradite quartzite of the pumpellyite-actinolite facies. Conditions of formation involved temperatures of 300 to 400 ° or less, at pressures up to a few kilobars. A wide range of oxygen fugacities is possible, but $$\mu _{CO_2 } $$ in the fluid phase was low. Grandite and chlorite are incompatible in the pumpellyite-actinolite and greenschist facies in the presence of quartz but the 2 minerals occur together in some pumpellyite-actinolite facies assemblages as a result of incomplete reaction and/or local deficiency in silica. In the greenschist facies the association is replaced by epidote-actinolite±hematite and sodic amphibole. Whereas at medium to high grades of metamorphism andradite and grandite are characteristic of skarns irrespective of $$\mu _{CO_2 } $$ , at very low grades they are found in mafic volcanic rocks and volcanogenic sediments as well as in certain cherty rocks of unusual composition, rodingites, and serpentinites, where $$\mu _{CO_2 } $$ was very low.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...