ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1996-02-23
    Description: Transmembrane signaling by bacterial chemotaxis receptors appears to require a conformational change within a receptor dimer. Dimers were engineered of the cytoplasmic domain of the Escherichia coli aspartate receptor that stimulated the kinase CheA in vitro. The folding free energy of the leucine-zipper dimerization domain was harnessed to twist the dimer interface of the receptor, which markedly affected the extent of CheA activation. Response to this twist was attenuated by modification of receptor regulatory sites, in the same manner as adaptation resets sensitivity to ligand in vivo. These results suggest that the normal allosteric activation of the chemotaxis receptor has been mimicked in a system that lacks both ligand-binding and transmembrane domains. The most stimulatory receptor dimer formed a species of tetrameric size.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cochran, A G -- Kim, P S -- T32 AI07348-07/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1996 Feb 23;271(5252):1113-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8599087" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/chemistry/*metabolism ; Chemoreceptor Cells ; Chemotaxis ; Cytoplasm/metabolism ; Enzyme Activation ; Escherichia coli/*metabolism ; *Escherichia coli Proteins ; Leucine Zippers ; Ligands ; Membrane Proteins/chemistry/*metabolism ; Methylation ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation ; Protein Kinases/metabolism ; Protein Structure, Secondary ; Receptors, Amino Acid/chemistry/*metabolism ; *Receptors, Cell Surface ; Recombinant Fusion Proteins/chemistry/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...