ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution April 1983
    Description: Ocean acoustic tomography was proposed in 1978 by Munk and Wunsch as a possible technique for monitoring the evolution of temperature, density, and current fields over large regions. In 1981, the Ocean Tomography Group deployed four 224 Hz acoustic sources and five receivers in an array which fit within a box 300 km. on a side centered on 26°N, 70°W (southwest of Bermuda). The experiment was intended both to demonstrate the practicality of tomography as an observation tool and to extend the understanding of mesoscale evolution in the low-energy region far from the strong Gulf Stream recirculation. The propagation of 224 Hz sound energy in the ocean can be described as a set of rays traveling from source to receiver, with each ray taking a different path through the ocean in a vertical plane connecting the source and receiver. The sources transmitted a phase-coded signal which was processed at the receiver to produce a pulse at the time of arrival of the signal. Rays can be distinguished by their different pulse travel times, and these travel times change in response to variations in sound speed and current in the ocean through which the rays passed. In order to reconstruct the ocean variations from the observed travel time changes, it is necessary to specify models for both the variations and their effect on the travel times. The dependence of travel time on the oceanic sound speed and current fields can be calculated using ray paths traced by computer. The vertical structure of the sound speed and current fields in the ocean were modelled as a combination of Empirical Orthogonal Functions (EOFs) from MODE. The horizontal structure was continuous, but was constrained to have a gaussian covariance with a 100 km. e- folding scale. The resulting estimator closely resembles objective mapping as used in meteorology and physical oceanography. The tomographic system has at present only been used to estimate sound speed structure for comparison with the traditional measurements, especially the first two NOAA CTD surveys, but the method provides means for estimating density, temperature or velocity fields, and these will be produced in the future. The sound speed estimates made using the tomographic system match the traditional measurements to within the associated error bars, and there are several possibilities for improving the signal to noise ratio of the data. Given high-precision data, tomographic systems can resolve ocean structures at small scales, such as in the Gulf Stream, or at large scales, over entire ocean basins. Work is in progress to evaluate the usefulness of tomography as an observation tool in these applications.
    Description: My support for the first 3 years came from an NSF graduate fellowship, and I was then supported as a research assistant by NSF Grant OCE-8017791.
    Keywords: Underwater acoustics ; Sound transmission
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4), (2020): 1045-1064, doi:10.1175/JPO-D-19-0137.1.
    Description: Three simulations of the circulation in the Gulf of Mexico (the “Gulf”) using different numerical general circulation models are compared with results of recent large-scale observational campaigns conducted throughout the deep (〉1500 m) Gulf. Analyses of these observations have provided new understanding of large-scale mean circulation features and variability throughout the deep Gulf. Important features include cyclonic flow along the continental slope, deep cyclonic circulation in the western Gulf, a counterrotating pair of cells under the Loop Current region, and a cyclonic cell to the south of this pair. These dominant circulation features are represented in each of the ocean model simulations, although with some obvious differences. A striking difference between all the models and the observations is that the simulated deep eddy kinetic energy under the Loop Current region is generally less than one-half of that computed from observations. A multidecadal integration of one of these numerical simulations is used to evaluate the uncertainty of estimates of velocity statistics in the deep Gulf computed from limited-length (4 years) observational or model records. This analysis shows that the main deep circulation features identified from the observational studies appear to be robust and are not substantially impacted by variability on time scales longer than the observational records. Differences in strengths and structures of the circulation features are identified, however, and quantified through standard error analysis of the statistical estimates using the model solutions.
    Description: This work was supported by the Gulf Research Program of the National Academy of Sciences under Awards 2000006422 and 2000009966. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Gulf Research Program or the National Academy of Sciences. The authors acknowledge the GLORYS project for providing the ocean reanalysis data used in the ROMS simulation. GLORYS is jointly conducted by MERCATOR OCEAN, CORIOLIS, and CNRS/INSU. Installation, recovery, data acquisition, and processing of the CANEK group current-meter moorings were possible because of CICESE-PetróleosMexicanos Grant PEP-CICESE 428229851 and the dedicated work of the crew of the B/O Justo Sierra and scientists of the CANEK group. The authors thank Dr. Aljaz Maslo, CICESE, for assistance with analysis of model data. The Bureau of Ocean Energy Management (BOEM), U.S. Dept. of the Interior, provided funding for the Lagrangian Study of the Deep Circulation in the Gulf of Mexico and the Observations and Dynamics of the Loop Current study. HYCOM simulation data are available from the HYCOM data server (https://www.hycom.org/data/goml0pt04/expt-02pt2), MITgcm data are available from the ECCO data server (http://ecco.ucsd.edu/gom_results2.html), and the ROMS simulation data are available from GRIIDC (NA.x837.000:0001).
    Keywords: Ocean circulation ; Abyssal circulation ; Bottom currents/bottom water ; Eddies ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...