ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: Various beam imaging and/or sheet forming optics delivered light at 1064 nm from a pulsed Nd:YAG laser for use either as a beam of 3 mm radius or as a laser sheet. Imaging measurements were performed with a grated intensified array camera equipped with an ultraviolet f4.5 lens and a 40 mm extension tube. Point measurements were performed using an ultraviolet 250 mm focal length lens to collect and focus the laser induced incandescence (LII) signal into a 1 meter long quartz optical fiber which directed the LII signal to a 1/4 meter monochromator. An aperture preceding the lens restricted the signal collection region to 1 cm along the laser beam at the center of the gravimetric chimney. Signals from the PMT were processed by a boxcar integrator whereas the images were captured digitally using a frame-grabber with 16 MByte of on-board memory. Both 'point' and planar measurements were made with detector gates of 250 ns to minimize possible morphology bias in collection of the LII signal. Additionally, the imaging measurements were performed with broadband spectral collection of the LII signal to maximize the signal and again minimize any potential effects of morphology dependent heating and/or cooling rates. Digital delay generators controlled the firing of he laser, detector gates and data acquisition. Neutral density filters were used for both sets of measurements to maintain signal levels within linear dynamic ranges of the detectors, the range being determined prior to experiments.
    Keywords: Inorganic and Physical Chemistry
    Type: NASA-CR-202088 , NAS 1.26:202088
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-11
    Description: Analysis of sun photometer measured and satellite retrieved aerosol optical depth (AOD) data has shown that major aerosol pollution events with very high fine mode AOD (〉1.0 in mid-visible) in the China/Korea/Japan region are often observed to be associated with significant cloud cover. This makes remote sensing of these events difficult even for high temporal resolution sun photometer measurements. Possible physical mechanisms for these events that have high AOD include a combination of aerosol humidification, cloud processing, and meteorological co-variation with atmospheric stability and convergence. The new development of Aerosol Robotic network (AERONET) Version 3 Level 2 AOD with improved cloud screening algorithms now allow for unprecedented ability to monitor these extreme fine mode pollution events. Further, the Spectral Deconvolution Algorithm (SDA) applied to Level 1 data (L1; no cloud screening) provides an even more comprehensive assessment of fine mode AOD than L2 in current and previous data versions. Studying the 2012 winter-summer period, comparisons of AERONET L1 SDA daily average fine mode AOD data showed that Moderate Resolution Imaging Spectroradiometer (MODIS) satellite remote sensing of AOD often did not retrieve and/or identify some of the highest fine mode AOD events in this region. Also, compared to models that include data assimilation of satellite retrieved AOD, the L1 SDA fine mode AOD was significantly higher in magnitude, particularly for the highest AOD events that were often associated with significant cloudiness.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN57373 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 123; 10; 5560-5587
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-09
    Description: Analysis of Sun photometer measured and satellite retrieved aerosol optical depth (AOD) datahas shown that major aerosol pollution events with very highfine mode AOD (〉1.0 in midvisible) in theChina/Korea/Japan region are often observed to be associated with significant cloud cover. This makesremote sensing of these events difficult even for high temporal resolution Sun photometer measurements.Possible physical mechanisms for these events that have high AOD include a combination of aerosolhumidification, cloud processing, and meteorological covariation with atmospheric stability andconvergence. The new development of Aerosol Robotic Network Version 3 Level 2 AOD with improved cloudscreening algorithms now allow for unprecedented ability to monitor these extremefine mode pollutionevents. Further, the spectral deconvolution algorithm (SDA) applied to Level 1 data (L1; no cloud screening)provides an even more comprehensive assessment offine mode AOD than L2 in current and previous dataversions. Studying the 2012 winter-summer period, comparisons of Aerosol Robotic Network L1 SDA dailyaveragefine mode AOD data showed that Moderate Resolution Imaging Spectroradiometer satellite remotesensing of AOD often did not retrieve and/or identify some of the highestfine mode AOD events in thisregion. Also, compared to models that include data assimilation of satellite retrieved AOD, the L1 SDAfinemode AOD was significantly higher in magnitude, particularly for the highest AOD events that were oftenassociated with significant cloudiness.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN70341 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 123; 10; 5560-5587
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Absolute calibration of laser-induced incandescence (LII) is demonstrated via comparison of LII signal intensities with gravimetrically determined soot volume fractions. This calibration technique does not rely upon calculated or measured optical characteristics of soot. The variation of the LII signal with gravimetrically measured soot volume fractions ranging from 0.078 to 1.1 ppm established the linearly of the calibration. With the high spatial and temporal resolution capabilities of laser-induced incandescence (LII), the spatial and temporal fluctuations of the soot field within a gravimetric chimney were characterized. Radial uniformity of the soot volume fraction, f(sub v) was demonstrated with sufficient averaging of the single laser-shot LII images of the soot field thus confirming the validity of the calibration method for imaging applications. As illustration, instantaneous soot volume fractions within a Re = 5000 ethylene/air diffusion flame measured via planar LII were established quantitatively with this calibration.
    Keywords: Inorganic and Physical Chemistry
    Type: NASA-CR-198495 , NAS 1.26:198495 , E-9551-1 , Central States Section Meeting; Apr 20, 1995 - Apr 23, 1995; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...