ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Atmospheric science. ; Water. ; Hydrology. ; Climatology. ; Measurement. ; Measuring instruments. ; Atmospheric Science. ; Water. ; Climate Sciences. ; Measurement Science and Instrumentation.
    Description / Table of Contents: SECTION 1 Status of Observations and Satellite Programs: Chapter 1. The Global Precipitation Measurement (GPM) mission -- Chapter 2. Status of the CloudSat mission -- Chapter 3. The Megha-Tropiques mission after seven years in space -- Chapter 4. Microwave sensors, imagers and sounders -- Chapter 5. Microwave and sub-mm wave sensors: A European perspective -- Chapter 6. Plans for future missions -- SECTION 2 Retrieval Techniques, Algorithms and Sensors: Chapter 7. Introduction to passive microwave retrieval methods -- Chapter 8. The Goddard Profiling (GPROF) precipitation retrieval algorithm -- Chapter 9. Precipitation estimation from the Microwave Integrated Retrieval System (MiRS) -- Chapter 10. Introduction to radar rain retrieval methods -- Chapter 11. Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurements (GPM) mission’s Core Observatory -- Chapter 12. DPR dual-frequency precipitation classification -- Chapter 13. Triple-frequency radar retrievals -- Chapter 14. Precipitation retrievals from satellite combined radar and radiometer observations -- Chapter 15. Scattering of hydrometeors -- Chapter 16. Radar snowfall measurement -- Chapter 17. A 1DVar-based snowfall rate algorithm for passive microwave radiometers -- Chapter 18. X-band synthetic aperture radar methods -- SECTION 3 Merged Precipitation Products: Chapter 19. Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG) -- Chapter 20. Global Satellite Mapping of Precipitation (GSMaP) products in the GPM era -- Chapter 21. Improving PERSIANN-CCS using passive microwave rainfall estimation -- Chapter 22. TAMSAT -- Chapter 23. Algorithm and data improvements for version 2.1 of the Climate Hazards Center’s Infrared Precipitation with Stations Data Set -- Chapter 24. Merging the infrared fleet and the microwave constellation for tropical hydrometeorology (TAPEER) and global climate monitoring (GIRAFE) applications -- SECTION 4 Validation: Chapter 25. The IPWG satellite precipitation validation effort -- Chapter 26. The GPM Ground Validation Program -- Chapter 27. The GPM DPR Validation Program -- Chapter 28. Error and uncertainty characterization -- Chapter 29. Multiscale evaluation of satellite precipitation products: Effective resolution of IMERG -- Chapter 30. Remote sensing of orographic precipitation -- Chapter 31. Integrated multi-satellite evaluation for the Global Precipitation Measurement: Impact of precipitation types on spaceborne precipitation estimation -- Chapter 32. Hydrologic validation and flood analysis -- Chapter 33. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling -- Chapter 34. OceanRAIN – The global ocean surface-reference dataset for characterization, validation and evaluation of the water cycle -- SECTION 5 Observed Characteristics of Precipitation: Chapter 35. GPCP and the global characteristics of precipitation -- Chapter 36. Global snowfall detection and measurement -- Chapter 37. Snowfall detection by spaceborne radars -- Chapter 38. On the duration and lifecyle of precipitation systems in the tropics -- Chapter 39. Observational characteristics of warm-type heavy rainfall -- Chapter 40. Satellite precipitation measurement and extreme rainfall -- Chapter 41. Rainfall trends in East Africa from an ensemble of IR-based satellite products -- Chapter 42. Heavy precipitation systems in the Mediterranean area: The role of GPM -- Chapter 43. Dryland precipitation climatology from satellite observations -- Chapter 44. Haifall detection -- Chapter 45. Improving high-latitude and cold region precipitation analysis -- Chapter 46. Latent heating retrievals from satellite observations -- SECTION 6 Applications: Chapter 47. Operational applications of Global Precipitation Measurement observations -- Chapter 48. Assimilation of precipitation observations from space into numerical weather prediction (NWP) -- Chapter 49. Precipitation ensemble data assimilation in NWP models -- Chapter 50. PERSIANN-CDR for hydrology and hydro-climatic applications -- Chapter 51. Soil moisture and precipitation: The SM2RAIN algorithm for rainfall retrieval from satellite soil moisture -- Chapter 52. Drought risk management using satellite-based rainfall estimates -- Chapter 53. Two decades of urban hydroclimatological studies have yielded discovery and societal benefits -- Chapter 54. Validation of climate models -- Chapter 55. Extreme precipitation in the Himalayan landslide hotspot -- Chapter 56. The value of satellite rainfall estimates in agriculture and food security -- Chapter 57. Using satellite estimates of precipitation for fire danger rating -- Chapter 58. Variability of satellite sea surface salinity under rainfall.
    Abstract: This book offers a complete overview of the measurement of precipitation from space, which has made considerable advancements during the last two decades. This is mainly due to the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM) mission, CloudSat and a carefully maintained constellation of satellites hosting passive microwave sensors. The book revisits a previous book, Measuring Precipitation from Space, edited by V. Levizzani, P. Bauer and F. J. Turk, published with Springer in 2007. The current content has been completely renewed to incorporate the advancements of science and technology in the field since then. This book provides unique contributions from field experts and from the International Precipitation Working Group (IPWG). The book will be of interest to meteorologists, hydrologists, climatologists, water management authorities, students at various levels and many other parties interested in making use of satellite precipitation data sets. Chapter “TAMSAT” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
    Type of Medium: Online Resource
    Pages: LXXI, 450 p. 108 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9783030245689
    Series Statement: Advances in Global Change Research, 67
    DDC: 551.5
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Atmospheric science. ; Climatology. ; Measurement. ; Measuring instruments. ; Water. ; Hydrology. ; Atmospheric Science. ; Climate Sciences. ; Measurement Science and Instrumentation. ; Water.
    Description / Table of Contents: SECTION 4 Validation: Chapter 25. The IPWG satellite precipitation validation effort -- Chapter 26. The GPM Ground Validation Program -- Chapter 27. The GPM DPR Validation Program -- Chapter 28. Error and uncertainty characterization -- Chapter 29. Multiscale evaluation of satellite precipitation products: Effective resolution of IMERG -- Chapter 30. Remote sensing of orographic precipitation -- Chapter 31. Integrated multi-satellite evaluation for the Global Precipitation Measurement: Impact of precipitation types on spaceborne precipitation estimation -- Chapter 32. Hydrologic validation and flood analysis -- Chapter 33. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling -- Chapter 34. OceanRAIN – The global ocean surface-reference dataset for characterization, validation and evaluation of the water cycle -- SECTION 5 Observed Characteristics of Precipitation: Chapter 35. GPCP and the global characteristics of precipitation -- Chapter 36. Global snowfall detection and measurement -- Chapter 37. Snowfall detection by spaceborne radars -- Chapter 38. On the duration and lifecyle of precipitation systems in the tropics -- Chapter 39. Observational characteristics of warm-type heavy rainfall -- Chapter 40. Satellite precipitation measurement and extreme rainfall -- Chapter 41. Rainfall trends in East Africa from an ensemble of IR-based satellite products -- Chapter 42. Heavy precipitation systems in the Mediterranean area: The role of GPM -- Chapter 43. Dryland precipitation climatology from satellite observations -- Chapter 44. Haifall detection -- Chapter 45. Improving high-latitude and cold region precipitation analysis -- Chapter 46. Latent heating retrievals from satellite observations -- SECTION 6 Applications: Chapter 47. Operational applications of Global Precipitation Measurement observations -- Chapter 48. Assimilation of precipitation observations from space into numerical weather prediction (NWP) -- Chapter 49. Precipitation ensemble data assimilation in NWP models -- Chapter 50. PERSIANN-CDR for hydrology and hydro-climatic applications -- Chapter 51. Soil moisture and precipitation: The SM2RAIN algorithm for rainfall retrieval from satellite soil moisture -- Chapter 52. Drought risk management using satellite-based rainfall estimates -- Chapter 53. Two decades of urban hydroclimatological studies have yielded discovery and societal benefits -- Chapter 54. Validation of climate models -- Chapter 55. Extreme precipitation in the Himalayan landslide hotspot -- Chapter 56. The value of satellite rainfall estimates in agriculture and food security -- Chapter 57. Using satellite estimates of precipitation for fire danger rating -- Chapter 58. Variability of satellite sea surface salinity under rainfall.
    Abstract: This book offers a complete overview of the measurement of precipitation from space, which has made considerable advancements during the last two decades. This is mainly due to the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM) mission, CloudSat and a carefully maintained constellation of satellites hosting passive microwave sensors. The book revisits a previous book, Measuring Precipitation from Space, edited by V. Levizzani, P. Bauer and F. J. Turk, published with Springer in 2007. The current content has been completely renewed to incorporate the advancements of science and technology in the field since then. This book provides unique contributions from field experts and from the International Precipitation Working Group (IPWG). The book will be of interest to meteorologists, hydrologists, climatologists, water management authorities, students at various levels and many other parties interested in making use of satellite precipitation data sets.
    Type of Medium: Online Resource
    Pages: XCIII, 725 p. 300 illus., 251 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9783030357986
    Series Statement: Advances in Global Change Research, 69
    DDC: 551.5
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: The one-dimensional, steady-state melting layer model developed in Part I of this study is used to calculate both the microphysical and radiative properties of melting precipitation, based upon the computed concentrations of snow and graupel just above the freezing level at applicable horizontal gridpoints of 3-dimensional cloud resolving model simulations. The modified 3-dimensional distributions of precipitation properties serve as input to radiative transfer calculations of upwelling radiances and radar extinction/reflectivities at the TRMM Microwave Imager (TMI) and Precipitation Radar (PR) frequencies, respectively. At the resolution of the cloud resolving model grids (approx. 1 km), upwelling radiances generally increase if mixed-phase precipitation is included in the model atmosphere. The magnitude of the increase depends upon the optical thickness of the cloud and precipitation, as well as the scattering characteristics of ice-phase precipitation aloft. Over the set of cloud resolving model simulations utilized in this study, maximum radiance increases of 43, 28, 18, and 10 K are simulated at 10.65, 19.35 GHz, 37.0, and 85.5 GHz, respectively. The impact of melting on TMI-measured radiances is determined not only by the physics of the melting particles but also by the horizontal extent of the melting precipitation, since the lower-frequency channels have footprints that extend over 10''s of kilometers. At TMI resolution, the maximum radiance increases are 16, 15, 12, and 9 K at the same frequencies. Simulated PR extinction and reflectivities in the melting layer can increase dramatically if mixed-phase precipitation is included, a result consistent with previous studies. Maximum increases of 0.46 (-2 dB) in extinction optical depth and 5 dBZ in reflectivity are simulated based upon the set of cloud resolving model simulations.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: Passive and active microwave remote sensing data are analyzed to identify signatures of precipitation and vertical motion in tropical convection. A database of cloud/radiative model simulations is used to quantify surface rain rates and latent heating profiles that are consistent with these signatures. At satellite footprint-scale (approximately 10 km), rain rate and latent heating estimates are subject to significant random errors, but by averaging the estimates in space and time, random errors are substantially reduced, Bias errors have been minimized by improving the microphysics in the supporting cloud/radiative model simulations, and by imposing a consistent definition of remotely-sensed and model-simulated convective/stratiform rain coverage. Remotely-sensed precipitation and latent heating distributions in the tropics are derived from Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave/ Imager (SSM/ I) sensor data. The prototype Version 6 TRMM passive microwave algorithm typically yields average heating profiles with maxima between 6 and 7 km altitude for organized mesoscale convective systems. Retrieved heating profiles for individual convective systems are compared to coincident estimates based upon a combination of dual-Doppler radar and rawinsonde data. Also, large-scale latent heating distributions are compared to estimates derived from a simpler technique that utilizes observations of surface rain rate and stratiform rain proportion to infer vertical heating structure. Results of these tests will be presented at the conference.
    Keywords: Earth Resources and Remote Sensing
    Type: International TRMM Science Conference; Jul 22, 2002 - Jul 26, 2002; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A methodology to analyze precipitation profiles using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR) is proposed. Rainfall profiles are retrieved from PR measurements, defined as the best-fit solution selected from precalculated profiles by cloud-resolving models (CRMs), under explicitly defined assumptions of drop size distribution (DSD) and ice hydrometeor models. The PR path-integrated attenuation (PIA), where available, is further used to adjust DSD in a manner that is similar to the PR operational algorithm. Combined with the TMI-retrieved nonraining geophysical parameters, the three-dimensional structure of the geophysical parameters is obtained across the satellite-observed domains. Microwave brightness temperatures are then computed for a comparison with TMI observations to examine if the radar-retrieved rainfall is consistent in the radiometric measurement space. The inconsistency in microwave brightness temperatures is reduced by iterating the retrieval procedure with updated assumptions of the DSD and ice-density models. The proposed methodology is expected to refine the a priori rain profile database and error models for use by parametric passive microwave algorithms, aimed at the Global Precipitation Measurement (GPM) mission, as well as a future TRMM algorithms.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Atmospheric and Oceanic Technology; 22; 7; 909-929
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-27
    Description: Recent advances in cloud microphysical models have led to realistic three-dimensional distributions of cloud constituents. Radiative transfer schemes can make use of this detailed knowledge in order to study the effects of horizontal as well as vertical inhomogeneities within clouds. This study looks specifically at the differences between three-dimensional radiative transfer results and those obtained by plane parallel, independent pixel approximations in the microwave spectrum. A three-dimensional discrete ordinates method as well as a backward Monte Carlo method are used to calculate realistic radiances emerging from the cloud. Analyses between these models and independent pixel approximations reveal that plane parallel approximations introduce two distinct types of errors. The first error is physical in nature and is related to the fact that plane parallel approximations do not allow energy to leak out of dense areas into surrouding areas. In general, it was found that these errors are quite small for emission-dominated frequencies (37 GHz and lower) and that physical errors are highly pronounced only at scattering frequencies (85 GHz) where large deviations and biases up to 8 K averaged over the entire cloud were found. The second error is more geometric in nature and is related to the fact that plane parallel approximations cannot accommodate physical boundaries in the horizontal dimension for off-nadir viewing angles. The geometric errors were comparable in magnitude for all frequencies. Their magnitude, however, depends on a number of factors including the scheme used to deal with the edge, the nature of the surface, and the viewing angle.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D8; p. 16,707-16,718
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...