ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (9)
  • Meteorology and Climatology; Earth Resources and Remote Sensing  (2)
  • Earth Resources and Remote Sensing; Instrumentation and Photography; Meteorology and Climatology  (1)
  • Geophysics; Earth Resources and Remote Sensing  (1)
  • Meteorology and Climatology; Instrumentation and Photography  (1)
  • heavy metals  (1)
Collection
Keywords
Publisher
Years
  • 11
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Geophysics; Earth Resources and Remote Sensing
    Type: NF1676L-21446 , DISCOVER-AQ; May 04, 2015 - May 08, 2015; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: In land data assimilation, bias in the observation-minus-forecast (O-F) residuals is typically removed from the observations prior to assimilation by rescaling the observations to have the same long-term mean (and higher-order moments) as the corresponding model forecasts. Such observation rescaling approaches require a long record of observed and forecast estimates, and an assumption that the O-F mean differences are stationary. A two-stage observation bias and state estimation filter is presented, as an alternative to observation rescaling that does not require a long data record or assume stationary O-F mean differences. The two-stage filter removes dynamic (nonstationary) estimates of the seasonal scale O-F mean difference from the assimilated observations, allowing the assimilation to correct the model for synoptic-scale errors without adverse effects from observation biases. The two-stage filter is demonstrated by assimilating geostationary skin temperature (Tsk) observations into the Catchment land surface model. Global maps of the O-F mean differences are presented, and the two-stage filter is evaluated for one year over the Americas. The two-stage filter effectively removed the Tsk O-F mean differences, for example the GOES-West O-F mean difference at 21:00 UTC was reduced from 5.1 K for a bias-blind assimilation to 0.3 K. Compared to independent in situ and remotely sensed Tsk observations, the two-stage assimilation reduced the unbiased Root Mean Square Difference (ubRMSD) of the modeled Tsk by 10 of the open-loop values.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN15113 , Journal of Hydrometeorology (ISSN 1525-7541); 16; 1; 449-464
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: The latest CERES FM-5 instrument launched onboard the S-NPP spacecraft will use the VIIRS visible radiances from the NASA Land Product Evaluation and Analysis Tool Elements (PEATE) product for retrieving the cloud properties associated with its TOA flux measurement. In order for CERES to provide climate quality TOA flux datasets, the retrieved cloud properties must be consistent throughout the record, which is dependent on the calibration stability of the VIIRS imager. This paper assesses the NASA calibration stability of the VIIRS reflective solar bands using the Libya-4 desert and deep convective clouds (DCC). The invariant targets are first evaluated for temporal natural variability. It is found for visible (VIS) bands that DCC targets have half of the variability of Libya-4. For the shortwave infrared (SWIR) bands, the desert has less variability. The brief VIIRS record and target variability inhibits high confidence in identifying any trends that are less than 0.6yr for most VIS bands, and 2.5yr for SWIR bands. None of the observed invariant target reflective solar band trends exceeded these trend thresholds. Initial assessment results show that the VIIRS data have been consistently calibrated and that the VIIRS instrument stability is similar to or better than the MODIS instrument.
    Keywords: Meteorology and Climatology; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN14977 , REMOTE SENSING; 6; 4; 2809-2826
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: Consistent cross-sensor Advanced Very High Resolution Radiometer (AVHRR) calibration coefficients are determined using desert, polar ice, and deep convective cloud (DCC) invariant Earth targets. The greatest AVHRR calibration challenge is the slow orbit degradation of the host satellite, which precesses toward a terminator orbit. This issue is solved by characterizing the invariant targets with NOAA-16 AVHRR observed radiances that have been referenced to the Aqua Moderate Resolution Imaging Spectrometer (MODIS) calibration using simultaneous nadir overpass (SNO) observations. Another benefit of the NOAA-16 invariant target-modeled reflectance method is that, because of the similarities among the AVHRR spectral response functions, a smaller spectral band adjustment factor is required than when establishing calibrations relative to a non-AVHRR reference instrument. The sensor- and band-specific calibration uncertainties, with respect to the calibration reference, are, on average, 2 percent and 3 percent for channels 1 and 2, respectively. The uncertainties are smaller for sensors that are in afternoon orbits, have longer records, and spend less time in terminator conditions. The multiple invariant targets referenced to Aqua MODIS (MITRAM) AVHRR calibration coefficients are evaluated for individual target consistency, compared against Aqua MODIS/AVHRR SNOs, and selected published calibration gains. The MITRAM and SNO relative calibration biases mostly agree to within 1 percent for channels 1 and 2, respectively. The individual invariant target and MITRAM sensor relative calibration biases are mostly consistent to within 1 percent and 2 percent for channels 1 and 2, respectively. The differences between the MITRAM and other published calibrations are mostly attributed to the reference instrument calibration differences.
    Keywords: Meteorology and Climatology
    Type: NF1676L-23660 , Journal of Atmospheric and Oceanic Technology (e-ISSN 1520-0426); 33; 11; 2517-2534
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: We present comparisons of cloud droplet size distributions (DSDs) retrieved from the research scanning polarimeter (RSP) data with correlative in situ measurements made during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). The airborne portion of this field experiment was based out of St. John's airport, Newfoundland, Canada with the focus of this paper being on the deployment in May - June 2016. RSP was onboard the NASA C-130 aircraft together with an array of in situ and other remote sensing instrumentation. The RSP is an along-track scanner measuring the polarized and total reflectance in 9 spectral channels. Its uniquely high angular resolution allows for characterization of liquid water droplet sizes using the rainbow structure observed in the polarized reflectance over the scattering angle range from 135 to 165.degrees The rainbow is dominated by single scattering of light by cloud droplets, so its structure is characteristic specifically of the droplet sizes at cloud top (within unit optical depth into the cloud, equivalent to approximately 50m). A parametric fitting algorithm applied to the polarized reflectance provides retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, the Rainbow Fourier Transform (RFT), which allows us to retrieve the droplet size distribution itself. The latter is important in the case of clouds with complex microphysical structure, or multiple layers of cloud, which result in multi-modal DSDs. During NAAMES the aircraft performed a number of flight patterns specifically designed for comparisons between remote sensing retrievals and in situ measurements. These patterns consisted of two flight segments above the same straight ground track. One of these segments was flown above clouds allowing for remote sensing measurements, while the other was near the cloud top where cloud droplets were sampled. We compare the DSDs retrieved from the RSP data with in situ measurements made by the Cloud Droplet Probe (CDP). The comparisons generally show good agreement (better than 1 micron for effective radius and in most cases better than 0.02 for effective variance) with deviations explainable by the position of the aircraft within the cloud, or by the presence of additional cloud layers between the cloud being sampled by the in situ instrumentation and the altitude of the remote sensing segment. In the latter case, the multi-modal DSDs retrieved from the RSP data were consistent with the multi-layer cloud structures observed in the correlative High Spectral Resolution Lidar (HSRL) profiles. The results of these comparisons provide a rare validation of polarimetric droplet size retrieval techniques, demonstrating their accuracy and robustness and the potential of satellite data of this kind on a global scale.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN54419 , Remote Sensing of Environment (ISSN 0034-4257) (e-ISSN 1879-0704); 210; 76-95
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...