ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental mechanics 40 (2000), S. 129-137 
    ISSN: 1741-2765
    Keywords: stress measurement ; stress relief ; ESPI ; interferometry ; inversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Speckle interferometric fringe patterns record stress-relief displacements induced by the drilling of blind-holes into prestressed objects. The quantitative determination of residual stress state from such stress patterns is difficult because of the ambiguity in the order of the observed fringes. The plane stress magnitudes are provided directly from selected fringe positions using a stochastic, iterative least squares minimization approach. The inversion requires prior knowledge of the experimental geometry and an appropriate uniaxial stress-relief displacement basis function derived from three-dimensional finite element calculations. Superpositioning of the rotated and scaled displacement basis functions allows the stress-relief relaxation for any biaxial state of stress to be determined. In this paper, fringe patterns were forward modeled from a large ensemble of calculated biaxial stress-relief displacement fields. Inversion of these noise-free fringe patterns reproduced the biaxial stresses with negligible error. Analysis of more realistic fringe patterns that include speckle noise gave stress magnitude errors that diminished rapidly with the number of selected points to better than 3 percent for 100 points. Sensitivity of the optical method is influenced by a number of factors, but the ensemble of model fringe patterns studied indicates that the stress magnitudes (nomalized with respect to the material's Young's modulus) from 3×10−4 to 10−2 can accurately be determined with visible laser radiation. The method is amenable to automation and can easily be extended to study near surface gradients in the residual stresses or applied to other optical recording techniques such as moiré and phase-shifting interferometry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-03
    Description: Under the framework of the ANDRILL Southern McMurdo Sound (SMS) Project successful downhole experiments were conducted in the 1138.54 metre (m)-deep AND-2A borehole. Wireline logs successfully recorded were: magnetic susceptibility, spectral gamma ray, sonic velocity, borehole televiewer, neutron porosity, density, calliper, geochemistry, temperature and dipmeter. A resistivity tool and its backup both failed to operate, thus resistivity data were not collected. Due to hole conditions, logs were collected in several passes from the total depth at ~1138 metres below sea floor (mbsf) to ~230 mbsf, except for some intervals that were either inaccessible due to bridging or were shielded by the drill string. Furthermore, a Vertical Seismic Profile (VSP) was created from ~1000 mbsf up to the sea floor. The first hydraulic fracturing stress measurements in Antarctica were conducted in the interval 1000-1138 mbsf. This extensive data set will allow the SMS Science Team to reach some of the ambitious objectives of the SMS Project. Valuable contributions can be expected for the following topics: cyclicity and climate change, heat flux and fluid flow, seismic stratigraphy in the Victoria Land Basin, and structure and state of the modern crustal stress field.
    Description: Published
    Description: 57-68
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: restricted
    Keywords: Downhole measurements ; Borehole ; Vertical Seismic Profile ; Hydraulic Fracturing ; Antarctica ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...