ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Description: The feasibility of a novel p(+)-Si(1-x)Ge(x)-p-Si heterojunction internal photoemission (HIP) IR detector is demonstrated. A degenerately doped p(x)-Si(1-x)Ge(x) layer is required for strong IR absorption to generate photoexcited holes. The Si(1-x)Ge(x) layers are grown by molecular beam epitaxy, with boron concentrations up to 10 to the 20th/cu cm achieved by using an HBO2 source. Photoresponse at wavelengths ranging from 2 to 10 microns has been obtained with quantum efficiencies above 1 percent. The tailorable cutoff wavelength of the HIP detector has been demonstrated by varying the Ge composition ratio in the Si(1-x)Ge(x) layers.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: Applied Physics Letters (ISSN 0003-6951); 57; 1422-142
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: SiGe/Si heterojunction internal photoemission (HIP) detectors have been fabricated utilizing molecular beam epitaxy of p(+)-SiGe layers on p(-)-Si substrates. Elemental boron from a high-temperature effusion cell was used as the dopant source during MBE growth, and high doping concentrations have been achieved. Strong infrared absorption, mainly by free-carrier absorption, was observed for the degenerately doped SiGe layers. The use of elemental boron as the dopant source allows a low MBE growth temperature, resulting in improved crystalline quality and smooth surface morphology of the Si(0.7)Ge(0.3) layers. Nearly ideal thermionic emission dark current characteristics have been obtained. Photoresponse of the HIP detectors in the long-wavelength infrared regime has been demonstrated.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: Applied Physics Letters (ISSN 0003-6951); 60; 380-382
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: Increasing the effective Schottky-barrier height of epitaxial CoSi2/Si(111) diodes by the use of thin, highly doped Si layers in close proximity to the metal-semiconductor interface has been studied. Intrinsic Si, Si doped by coevaporation of Ga, and epitaxial CoSi2 layers have all been grown in the same molecular-beam epitaxy system. Current-voltage and photoresponse characterization yield barrier heights ranging from 0.61 eV for a sample with no p(+) layer to 0.89 eV for a sample with a 20-nm-thick p(+) layer. These results are compared to theoretical values based on a one-dimensional solution of Poisson's equation under the depletion approximation.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: Journal of Applied Physics (ISSN 0021-8979); 64; 4082-408
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: By incorporating a 1-nm-thick p(+) doping spike at the PtSi/Si interface, we have successfully demonstrated extended cutoff wavelengths of PtSi Schottky infrared detectors in the long wavelength infrared (LWIR) regime for the first time. The extended cutoff wavelengths resulted from the combined effects of an increased electric field near the silicide/Si interface due to the p(+) doping spike and the Schottky image force. The p(+) doping spikes were grown by molecular beam epitaxy at 450 C, using elemental boron as the dopant source, with doping concentrations ranging from 5 x 10 exp 19 to 2 x 10 exp 20/cu cm. Transmission electron microscopy indicated good crystalline quality of the doping spikes. The cutoff wavelengths were shown to increase with increasing doping concentrations of the p(+) spikes. Thermionic emission dark current characteristics were observed and photoresponses in the LWIR regime were demonstrated.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: Applied Physics Letters (ISSN 0003-6951); 62; 25; p. 3318-3320.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...