ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 18 (1988), S. 201-212 
    ISSN: 1573-0867
    Keywords: Dicyandiamide ; large urea granule ; urea hydrolysis ; nitrite accumulation ; liming ; nitrification inhibitor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A laboratory incubation experiment was conducted to gain a better understanding of N transformations which occur near large urea granules in soil and the effects of dicyandiamide (DCD), nitrifier activity and liming. Soil cores containing a layer of urea were used to provide a one-dimensional approach and to facilitate sampling. A uniform layer of 2 g urea or urea + DCD was placed in the centre of a 20 cm-long soil core within PVC tubing. DCD was mixed with urea powder at 50 mg kg−1 urea and enrichment of soil with nitrifiers was accomplished by preincubating Conestogo silt loam with 50 mg NH 4 + -N kg−1 soil. Brookston clay (pH 5.7) was limited with CaCO3 to increase the pH to 7.3. The cores were incubated at 15°C and, after periods of 10, 20, 35 and 45 days, were separated into 1-cm sections. The distribution of N species was similar on each side of the urea layer at each sampling. The pH and NH 4 + (NH3) concentration were very high near the urea layer but decreased sharply with distance from it. DCD did not influence urea hydrolysis significantly. Liming of Brookston clay increased urea hydrolysis. The rate of urea hydrolysis was greater in Conestogo silt loam than limed Brookston clay. Nitrite accumulate was relatively small with all the treatments and occurred near the urea layer (0–4 cm) where pH and NH 4 + (NH3) concentration were high. The nitrification occurred in the zone where NH 4 + (NH3) concentration was below 1000µgN g−1 and soil pH was below 8.0 and 8.7 in Brookston and Conestogo soils, respectively. DCD reduced the nitrifier activity (NA) in soil thereby markedly inhibiting nitrification of NH 4 + . Nitrification was increased significantly with liming of the Brookston soil or nitrifier enrichment of the Conestogo soil. There was a significant increase in NA during the nitrification of urea-N. The (NO 2 − + NO 3 − )-N concentration peaks coincided with the NA peaks in the soil cores. A practical implication of this work is that large urea granules will not necessarily result in NO 2 − phytotoxicity when applied near plants. A placement depth of about 5 cm below the soil surface may preclude NH3 loss from large urea granules. DCD is a potential nitrification inhibitor for use with large urea granules or small urea granules placed in nests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...